THIRD EDITION

= i =
B i et s

SStephen

Zvonko_ Vranesic -

TR

FUNDAMENTALS
OF
DiciTAL LoGic wiTH VHDL DESIGN

THIRD EDITION

Stephen Brown and Zvonko Vranesic
Department of Electrical and Computer Engineering
University of Toronto

% Higher Education

Boston Burr Ridge, IL Dubuque, IA° New York San Francisco St. Louis
Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

The McGraw-Hill companies

5 Higher Education

FUNDAMENTALS OF DIGITAL LOGIC WITH VHDL DESIGN, THIRD EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved.
Previous editions © 2005, 2000. No part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or
broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.
1234567890DOC/DOCO098

ISBN 978-0-07-352953-0
MHID 0-07-352953-2

Global Publisher: Raghothaman Srinivasan
Vice-President New Product Launches: Michael Lange
Developmental Editor: Darlene M. Schueller
Senior Marketing Manager: Curt Reynolds

Project Manager: April R. Southwood

Senior Production Supervisor: Kara Kudronowicz
Lead Media Project Manager: Stacy A. Patch
Designer: Laurie B. Janssen

Cover Designer: Ron Bisseli

(USE) Cover Image: Corbis, RF

Senior Photo Research Coordinator: Lori Hancock
Compositor: Techsetters, Inc.

Typetace: 10/12 Times Roman

Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Brown, Stephen D.
Fundamentals of digital logic with VHDL design / Stephen Brown, Zvonko Vranesic. — 3rd ed.
p. cm.
Includes index.
ISBN 978-0-07-352953-0 — ISBN: 0-07-352953-2 (hbk. : alk. paper) 1. Logic circuits—Design
and construction—Data processing. 2. Logic design—-Data processing. 3. VHDL (Computer hardware
description language) I. Vranesic, Zvonko G. II. Title.

TK7888.4.B76 2009
621.39'5-dc22
2008001634

www.mhhe.com

http://www.mhhe.com

To Susan and Anne

ABOUT THE AUTHORS

Stephen Brown received the Ph.D. and M.A.Sc. degrees in Electrical Engineering from the
University of Toronto, and his B.A.Sc. degree in Electrical Engineering from the University
of New Brunswick. He joined the University of Toronto faculty in 1992, where he is now
a Professor in the Department of Electrical & Computer Engineering. He also holds the
position of Architect at the Altera Toronto Technology Center, a world-leading research
and development site for CAD software and FPGA architectures, where he is involved in
research activities and is the Director of the Altera University Program.

His research interests include field-programmable VLSI technology, CAD algorithms,
and computer architecture. He won the Canadian Natural Sciences and Engineering Re-
search Council’s 1992 Doctoral Prize for the best Ph.D. thesis in Canada. He is a coauthor of
more than 60 scientific research papers and two other textbooks: Fundamentals of Digital
Logic with Verilog Design, 2nd ed. and Field-Programmable Gate Arrays.

He has won multiple awards for excellence in teaching electrical engineering, computer
engineering, and computer science courses.

Zvonko Vranesic received his B.A.Sc., M.A.Sc., and Ph.D. degrees, all in Electrical Engi-
neering, from the University of Toronto. From 1963-1965 he worked as a design engineer
with the Northern Electric Co. Ltd. in Bramalea, Ontario. In 1968 he joined the Univer-
sity of Toronto, where he is now a Professor Emeritus in the Department of Electrical &
Computer Engineering. During the 1978-79 academic year, he was a Senior Visitor at
the University of Cambridge, England, and during 1984-85 he was at the University of
Paris, 6. From 1995 to 2000 he served as Chair of the Division of Engineering Science at
the University of Toronto. He is also involved in research and development at the Altera
Toronto Technology Center.

His current research interests include computer architecture and field-programmable
VLSI technology.

He is a coauthor of four other books: Computer Organization, 5th ed.; Fundamen-
tals of Digital Logic with Verilog Design, 2nd ed.; Microcomputer Structures; and Field-
Programmable Gate Arrays. In 1990, he received the Wighton Fellowship for “innovative
and distinctive contributions to undergraduate laboratory instruction.” In 2004, he received
the Faculty Teaching Award from the Faculty of Applied Science and Engineering at the
University of Toronto.

He has represented Canada in numerous chess competitions. He holds the title of
International Master.

McGraw-Hill Series in Electrical and Computer Engineering

Senior Consulting Editor
Stephen W. Director, University of Michigan, Ann Arbor

Circuits and Systems

Communications and Signal Processing
Computer Engineering

Control Theory and Robotics
Electromagnetics

Electronics and VLSI Circuits
Introductory

Power

Antennas, Microwaves, and Radar

Previous Consulting Editors

Ronald N. Bracewell, Colin Cherry, James F. Gibbons, Willis W. Harman, Hubert Heffner,
Edward W. Herold, John G. Linvill, Simon Ramo, Ronald A. Rohrer, Anthony E. Siegman,
Charles Susskind, Frederick E. Terman, John G. Truxal, Ernst Weber, and John R. Whinnery

PREFACE

This book is intended for an introductory course in digital logic design, which is a basic
course in most electrical and computer engineering programs. A successful designer of
digital logic circuits needs a good understanding of basic concepts and a firm grasp of
computer-aided design (CAD) tools. The purpose of our book is to provide the desirable
balance between teaching the basic concepts and practical application through CAD tools.
To facilitate the learning process, the necessary CAD software is included as an integral
part of the book package.

The main goals of the book are (1) to teach students the fundamental concepts in
classical manual digital design and (2) illustrate clearly the way in which digital circuits
are designed today, using CAD tools. Even though modern designers no longer use manual
techniques, except in rare circumstances, our motivation for teaching such techniques is
to give students an intuitive feeling for how digital circuits operate. Also, the manual
techniques provide an illustration of the types of manipulations performed by CAD tools,
giving students an appreciation of the benefits provided by design automation. Throughout
the book, basic concepts are introduced by way of examples that involve simple circuit
designs, which we perform using both manual techniques and modern CAD-tool-based
methods. Having established the basic concepts, more complex examples are then provided,
using the CAD tools. Thus our emphasis is on modern design methodology to illustrate
how digital design is carried out in practice today.

TECHNOLOGY AND CAD SUPPORT

The book discusses modern digital circuit implementation technologies. The emphasis is on
programmable logic devices (PLDs), which is the most appropriate technology for use in a
textbook for two reasons. First, PLDs are widely used in practice and are suitable for almost
all types of digital circuit designs. In fact, students are more likely to be involved in PLD-
based designs at some point in their careers than in any other technology. Second, circuits
are implemented in PLDs by end-user programming. Therefore, students can be provided
with an opportunity, in a laboratory setting, to implement the book’s design examples in
actual chips. Students can also simulate the behavior of their designed circuits on their own
computers. We use the two most popular types of PLDs for targeting of designs: complex
programmable logic devices (CPLDs) and field-programmable gate arrays (FPGAs).

Our CAD support is based on Altera Quartus II software. Quartus II provides automatic
mapping of a design into Altera CPLDs and FPGAs, which are among the most widely
used PLDs in the industry. The features of Quartus II that are particularly attractive for our
purposes are:

e It is a commercial product. The version included with the book supports all major
features of the product. Students will be able to easily enter a design into the CAD

viii

PREFACE

system, compile the design into a selected device (the choice of device can be changed
at any time and the design retargeted to a different device), simulate the functionality
and detailed timing of the resulting circuit, and if laboratory facilities are provided at
the student’s school, implement the designs in actual devices.

e [t provides for design entry using both hardware description languages (HDLs) and
schematic capture. In the book, we emphasize the HDL-based design because it is the
most efficient design method to use in practice. We describe in detail the IEEE Standard
VHDL language and use it extensively in examples. The CAD system included with the
book has a VHDL compiler, which allows the student to automatically create circuits
from the VHDL code and implement these circuits in real chips.

e It can automatically target a design to various types of devices. This feature allows us
to illustrate the ways in which the architecture of the target device affects a designer’s
circuit.

e It can be used on most types of popular computers. The version of Quartus II provided
with the book runs on computers using Microsoft Windows. However, through Altera’s
university program the software is also available for other machines, such as SUN or
HP workstations.

A Quartus II CD-ROM is included with each copy of the book. Use of the software
is fully integrated into the book so that students can try, firsthand, all design examples. To
teach the students how to use this software, the book includes three, progressively advanced,
hands-on tutorials.

SCOPE OF THE BOOK

Chapter 1 provides a general introduction to the process of designing digital systems. It
discusses the key steps in the design process and explains how CAD tools can be used to
automate many of the required tasks. It also introduces the binary numbers.

Chapter 2 introduces the basic aspects of logic circuits. It shows how Boolean algebra
is used to represent such circuits. It also gives the reader a first glimpse at VHDL, as an
example of a hardware description language that may be used to specify the logic circuits.

The electronic aspects of digital circuits are presented in Chapter 3. This chapter shows
how the basic gates are built using transistors and presents various factors that affect circuit
performance. The emphasis is on the latest technologies, with particular focus on CMOS
technology and programmable logic devices.

Chapter 4 deals with the synthesis of combinational circuits. It covers all aspects of
the synthesis process, starting with an initial design and performing the optimization steps
needed to generate a desired final circuit. It shows how CAD tools are used for this purpose.

Chapter 5 concentrates on circuits that perform arithmetic operations. It begins with
a discussion of how numbers are represented in digital systems and then shows how such
numbers can be manipulated using logic circuits. This chapter illustrates how VHDL can
be used to specify the desired functionality and how CAD tools provide a mechanism for
developing the required circuits.

PREFACE

Chapter 6 presents combinational circuits that are used as building blocks. It includes
the encoder, decoder, and multiplexer circuits. These circuits are very convenient for
illustrating the application of many VHDL constructs, giving the reader an opportunity to
discover more advanced features of VHDL.

Storage elements are introduced in Chapter 7. The use of flip-flops to realize regular
structures, such as shift registers and counters, is discussed. VHDL-specified designs of
these structures are included. The chapter also shows how larger systems, such as a simple
processor, may be designed.

Chapter 8 gives a detailed presentation of synchronous sequential circuits (finite state
machines). It explains the behavior of these circuits and develops practical design tech-
niques for both manual and automated design.

Asynchronous sequential circuits are discussed in Chapter 9. While this treatment is
not exhaustive, it provides a good indication of the main characteristics of such circuits.
Even though the asynchronous circuits are not used extensively in practice, they should be
studied because they provide an excellent vehicle for gaining a deeper understanding of
the operation of digital circuits in general. They illustrate the consequences of propagation
delays and race conditions that may be inherent in the structure of a circuit.

Chapter 10 is a discussion of a number of practical issues that arise in the design of real
systems. It highlights problems often encountered in practice and indicates how they can
be overcome. Examples of larger circuits illustrate a hierarchical approach in designing
digital systems. Complete VHDL code for these circuits is presented.

Chapter 11 introduces the topic of testing. A designer of logic circuits has to be aware
of the need to test circuits and should be conversant with at least the most basic aspects of
testing.

Chapter 12 presents a complete CAD flow that the designer experiences when design-
ing, implementing, and testing a digital circuit.

Appendix A provides a complete summary of VHDL features. Although use of VHDL
is integrated throughout the book, this appendix provides a convenient reference that the
reader can consult from time to time when writing VHDL code.

Appendices B, C, and D contain a sequence of tutorials on the Quartus II CAD tools.
This material is suitable for self-study; it shows the student in a step-by-step manner how
to use the CAD software provided with the book.

Appendix E gives detailed information about the devices used in illustrative examples.

WHAT CAN BE COVERED IN A COURSE

All the material in the book can be covered in 2 one-quarter courses. A good coverage
of the most important material can be achieved in a single one-semester, or even a one-
quarter, course. This is possible only if the instructor does not spend too much time teaching
the intricacies of VHDL and CAD tools. To make this approach possible, we organized
the VHDL material in a modular style that is conducive to self-study. Our experience in
teaching different classes of students at the University of Toronto shows that the instructor
may spend only 3 to 4 lecture hours on VHDL, concentrating mostly on the specification
of sequential circuits. The VHDL examples given in the book are largely self-explanatory,

PREFACE

and students can understand them easily. Moreover, the instructor need not teach how to
use the CAD tools, because the Quartus II tutorials in Appendices B, C, and D are suitable
for self-study.

The book is also suitable for a course in logic design that does not include exposure to
VHDL. However, some knowledge of VHDL, even at a rudimentary level, is beneficial to
the students, and it is a great preparation for a job as a design engineer.

One-Semester Course

Most of the material in Chapter 1 is a general introduction that serves as a motivation
for why logic circuits are important and interesting; students can read and understand this
material easily.

The following material should be covered in lectures:
e Chapter 1—section 1.6.
e Chapter 2—all sections.

e Chapter 3—sections 3.1 to 3.7. Also, it is useful to cover sections 3.8 and 3.9 if the
students have some basic knowledge of electrical circuits.

e Chapter 4—sections 4.1 to 4.7 and section 4.12.
e Chapter 5—sections 5.1 to 5.5.

e Chapter 6—all sections.

e Chapter 7—all sections.

e Chapter 8—sections 8.1 to 8.9.

If time permits, it would also be very useful to cover sections 9.1 to 9.3 and section 9.6 in
Chapter 9, as well as one or two examples in Chapter 10.

One-Quarter Course

In a one-quarter course the following material can be covered:

e Chapter 1—section 1.6.

e Chapter 2—all sections.

e Chapter 3—sections 3.1 to 3.3.

e Chapter 4—sections 4.1 to 4.5 and section 4.12.
e Chapter 5—sections 5.1 to 5.3 and section 5.5.

e Chapter 6—all sections.

e Chapter 7—sections 7.1 to 7.10 and section 7.13.
e Chapter 8—sections 8.1 to 8.5.

A MORE TRADITIONAL APPROACH

The material in Chapters 2 and 4 introduces Boolean algebra, combinational logic circuits,
and basic minimization techniques. Chapter 2 provides initial exposure to these topics using

xii

PREFACE

only AND, OR, NOT, NAND, and NOR gates. Then Chapter 3 discusses the implementation
technology details, before proceeding with the synthesis techniques and other types of gates
in Chapter 4. The material in Chapter 4 is appreciated better if students understand the
technological reasons for the existence of NAND, NOR, and XOR gates, and the various
programmable logic devices.

An instructor who favors a more traditional approach may cover Chapters 2 and 4 in
succession. To understand the use of NAND, NOR, and XOR gates, it is necessary only
that the instructor provide a functional definition of these gates.

VHDL

VHDL is a complex language, which some instructors feel is too hard for beginning students
to grasp. We fully appreciate this issue and have attempted to solve it. It is not necessary to
introduce the entire VHDL language. In the book we present the important VHDL constructs
that are useful for the design and synthesis of logic circuits. Many other language constructs,
such as those that have meaning only when using the language for simulation purposes,
are omitted. The VHDL material is introduced gradually, with more advanced features
being presented only at points where their use can be demonstrated in the design of relevant
circuits.

The book includes more than 150 examples of VHDL code. These examples illustrate
how VHDL is used to describe a wide range of logic circuits, from those that contain only
a few gates to those that represent digital systems such as a simple processor.

SOLVED PROBLEMS

The chapters include examples of solved problems. They show how typical homework
problems may be solved.

HOMEWORK PROBLEMS

More than 400 homework problems are provided in the book. Answers to selected problems
are given at the back of the book. Solutions to all problems are available to instructors in
the Solutions Manual that accompanies the book.

LABORATORY

The book can be used for a course that does not include laboratory exercises, in which case
students can get useful practical experience by simulating the operation of their designed
circuits by using the CAD tools provided with the book. If there is an accompanying labora-
tory, then a number of design examples in the book are suitable for laboratory experiments.

PREFACE

Instructors can access the Solutions Manual and the PowerPoint slides (containing all
figures in the book) at:

www.mhhe.com/brownvranesic

ACKNOWLEDGMENTS

We wish to express our thanks to the people who have helped during the preparation of the
book. Kelly Chan helped with the technical preparation of the manuscript. Dan Vranesic
produced a substantial amount of artwork. He and Deshanand Singh also helped with the
preparation of the solutions manual. Tom Czajkowski helped in checking the answers to
some problems. Jonathan Rose provided helpful suggestions for improving the treatment of
timing issues. The reviewers, William Barnes, New Jersey Institute of Technology; Thomas
Bradicich, North Carolina State University; James Clark, McGill University; Stephen De-
Weerth, Georgia Institute of Technology; Clay Gloster, Jr., North Carolina State University
(Raleigh); Carl Hamacher, Queen’s University; Vincent Heuring, University of Colorado;
Yu Hen Hu, University of Wisconsin; Wei-Ming Lin, University of Texas (Austin); Wayne
Loucks, University of Waterloo; Nagi Mekhiel, Ryerson University; Maritza Muguira,
Kansas State University; Chris Myers, University of Utah; Nicola Nicolici, McMaster Uni-
versity; Vojin Oklobdzija, University of California (Davis); James Palmer, Rochester Insti-
tute of Technology; Witold Pedrycz, University of Alberta; Gandhi Puvvada, University of
Southern California; Teodoro Robles, Milwaukee School of Engineering; Tatyana Roziner,
Boston University; Rob Rutenbar, Carnegie Mellon University; Eric Schwartz, University
of Florida; Wen-Tsong Shiue, Oregon State University; Charles Silio, Jr., University of
Maryland; Scott Smith, University of Missouri (Rolla); Arun Somani, lowa State Univer-
sity; Bernard Svihel, University of Texas (Arlington); Steve Wilton, University of British
Columbia; Chao You, North Dakota State University; and Zeljko Zilic, McGill University
provided constructive criticism and made numerous suggestions for improvements.

We are grateful to the Altera Corporation for providing the Quartus I system, especially
to Chris Balough, Misha Burich, and Udi Landen. The support of McGraw-Hill people
has been exemplary. We truly appreciate the help of Raghothaman Srinivasan, Darlene
Schueller, April Southwood, Curt Reynolds, Laurie Janssen, Kara Kudronowicz, Stacy
Patch, Linda Avenarius, Lori Hancock and Kris Tibbetts.

Stephen Brown and Zvonko Vranesic

xiii

http://www.mhhe.com/brownvranesic

CONTENTS

Chapter 1
DESIGN CONCEPTS 1

1.1

1.2
1.3

1.4
1.5
1.6

Digital Hardware 2

1.1.1 Standard Chips 4
1.1.2 Programmable Logic Devices 4
1.1.3 Custom-Designed Chips 5

The Design Process 6
Design of Digital Hardware 8

1.3.1 Basic Design Loop 8
1.3.2 Structure of a Computer 9
1.3.3 Design of a Digital Hardware Unit 12

Logic Circuit Design in This Book 16
Theory and Practice 16

Binary Numbers 17

1.6.1 Conversion between Decimal and
Binary Systems 18
References 20

Chapter 2

INTRODUCTION TO LOGIC
Circulits 21

2.1
22
23
24

25

2.6

2.7

2.8

29

Variables and Functions 22

Inversion 25

Truth Tables 26

Logic Gates and Networks 27

2.4.1 Analysis of a Logic Network 29

Boolean Algebra 31

2.5.1 The Venn Diagram 35
252 Notation and Terminology 37
253 Precedence of Operations 39

Synthesis Using AND, OR, and NOT

Gates 39

2.6.1 Sum-of-Products and Product-of-Sums
Forms 41

NAND and NOR Logic Networks 47

Design Examples 52

2.8.1 Three-Way Light Control 52

282 Multiplexer Circuit 53

Introduction to CAD Tools 56

xiv

2.10

2.11
2.12

29.1 Design Entry 56

292 Synthesis 58

293 Functional Simulation 59
294 Physical Design 59
295 Timing Simulation 59
2.9.6 Chip Configuration 60

Introduction to VHDL 60

2.10.1 Representation of Digital Signals in
VHDL 62

2.10.2 Writing Simple VHDL Code 62

2.10.3 How Not to Write VHDL Code 64

Concluding Remarks 65

Examples of Solved Problems 66

Problems 69

References 74

Chapter 3
IMPLEMENTATION TECHNOLOGY 77

3.1
32
33

3.4
35

3.6

3.7

3.8

Transistor Switches 79

NMOS Logic Gates 82

CMOS Logic Gates 85

33.1 Speed of Logic Gate Circuits 91
Negative Logic System 91
Standard Chips 95

3.5.1 7400-Series Standard Chips

Programmable Logic Devices 98

95

3.6.1 Programmable Logic Array (PLA) 98
3.6.2 Programmable Array Logic (PAL) 101
3.6.3 Programming of PLAs and PALs 103
3.6.4 Complex Programmable Logic Devices
(CPLDs) 105
3.6.5 Field-Programmable Gate Arrays 109
3.6.6 Using CAD Tools to Implement
Circuits in CPLDs and FPGAs 114
3.6.7 Applications of CPLDs and FPGAs 114
Custom Chips, Standard Cells, and Gate
Arrays 114
Practical Aspects 118
3.8.1 MOSFET Fabrication and Behavior 118
3.8.2 MOSFET On-Resistance 121

383
3.84
385
3.8.6
3.8.7

3.8.8
3.9
391
392
3.10

3.10.1
3.11
3.12

Chapter

Transmission Gates

Concluding Remarks
Examples of Solved Problems
Problems

References

Voltage Levels in Logic Gates 122
Noise Margin 123

Dynamic Operation of Logic Gates 125
Power Dissipation in Logic Gates 128
Passing 1s and Os Through Transistor
Switches 130

Fan-in and Fan-out in Logic Gates
138
Exclusive-OR Gates
Multiplexer Circuit

132

139
140

Implementation Details for SPLDs, CPLDs,
and FPGAs

140
Implementation in FPGAs
149

146

149
157
166

4

OPTIMIZED IMPLEMENTATION OF
Logcic FuncTIiONS 167

4.1 Karnaugh Map 168
4.2 Strategy for Minimization 176
4.2.1 Terminology 177
422 Minimization Procedure 179
4.3 Minimization of Product-of-Sums Forms 182
4.4 Incompletely Specified Functions 184
4.5 Multiple-Output Circuits 186
4.6 Multilevel Synthesis 189
4.6.1 Factoring 190
4.6.2 Functional Decomposition 194
4.6.3 Multilevel NAND and NOR
Circuits 199
4.7 Analysis of Multilevel Circuits 200
4.8 Cubical Representation 207
4.8.1 Cubes and Hypercubes 207
4.9 A Tabular Method for Minimization 211
4.9.1 Generation of Prime Implicants 212
49.2 Determination of a Minimum Cover 213
493 Summary of the Tabular Method 219
4.10 A Cubical Technique for Minimization 220
4.10.1 Determination of Essential Prime
Implicants 222
4.10.2 Complete Procedure for Finding a

Minimal Cover 224

4.11
4.12

4.13
4.14

CONTENTS XV

Practical Considerations 227
Examples of Circuits Synthesized from
VHDL Code 228
Concluding Remarks 232
Examples of Solved Problems
Problems 241

References 246

233

Chapter 5

NUMBER REPRESENTATION AND
ARITHMETIC CIRCUITS 249

5.1

52

53

5.4

5.5

5.6

5.7

Number Representations in Digital

Systems 250

5.1.1 Unsigned Integers 250

5.1.2 Octal and Hexadecimal
Representations 250

Addition of Unsigned Numbers 252
5.2.1 Decomposed Full-Adder 256
522 Ripple-Carry Adder 256

523 Design Example 258

Signed Numbers 258

5.3.1 Negative Numbers 258

532 Addition and Subtraction 262
5.33 Adder and Subtractor Unit 266
534 Radix-Complement Schemes 267
5.3.5 Arithmetic Overflow 271

5.3.6 Performance Issues 272

Fast Adders 273

54.1 Carry-Lookahead Adder 273

Design of Arithmetic Circuits Using CAD

Tools 280

5.5.1 Design of Arithmetic Circuits Using
Schematic Capture 280

552 Design of Arithmetic Circuits Using
VHDL 283

5.53 Representation of Numbers in VHDL
Code 286

554 Arithmetic Assignment Statements 287

Multiplication 291

5.6.1 Array Multiplier for Unsigned
Numbers 293

5.6.2 Multiplication of Signed Numbers 293

Other Number Representations 295

5.7.1 Fixed-Point Numbers 295

5.7.2 Floating-Point Numbers 297

5.8
59

CONTENTS

5.7.3 Binary-Coded-Decimal
Representation 299
ASCII Character Code 302
Examples of Solved Problems
Problems 312

References 316

305

Chapter 6

COMBINATIONAL-CIRCUIT
BuiLbpinG BLocks 317

6.1

6.2

6.3

6.4

6.5
6.6

6.7
6.8

Multiplexers 318

6.1.1 Synthesis of Logic Functions Using
Multiplexers 323

Multiplexer Synthesis Using Shannon’s
Expansion 326
Decoders 331

6.2.1 Demultiplexers
Encoders 337

6.3.1 Binary Encoders
6.3.2 Priority Encoders
Code Converters 339
Arithmetic Comparison Circuits
VHDL for Combinational Circuits
6.6.1 Assignment Statements 341
6.6.2 Selected Signal Assignment
6.6.3 Conditional Signal Assignment
6.6.4 Generate Statements 350
6.6.5 Concurrent and Sequential Assignment
Statements 352
Process Statement 352
Case Statement 358
6.6.8 VHDL Operators 361
Concluding Remarks 365
Examples of Solved Problems
Problems 374

References 379

6.1.2

335

337
338

340
341

342
346

6.6.6
6.6.7

365

Chapter 7

FLiP-FLOPS, REGISTERS,
COUNTERS, AND A SIMPLE
PROCESSOR 381

7.1
7.2

7.3

Basic Latch 383

Gated SR Latch 385

7.2.1 Gated SR Latch with NAND Gates
Gated D Latch 388

387

7.4

7.5

7.6
7.7
7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15
7.16
7.17

7.3.1 Effects of Propagation Delays 390
Master-Slave and Edge-Triggered D
Flip-Flops 391

7.4.1 Master-Slave D Flip-Flop 391

7.4.2 Edge-Triggered D Flip-Flop 391
743 D Flip-Flops with Clear and Preset 395
744 Flip-Flop Timing Parameters 396
T Flip-Flop 398

7.5.1 Configurable Flip-Flops 399

JK Flip-Flop 400

Summary of Terminology 401
Registers 401

7.8.1 Shift Register 401

7.8.2 Parallel-Access Shift Register 402
Counters 404

7.9.1 Asynchronous Counters 404

7.9.2 Synchronous Counters 406

793 Counters with Parallel Load 411
Reset Synchronization 411

Other Types of Counters 415

7.11.1 BCD Counter 415

7.11.2 Ring Counter 416

7.11.3 Johnson Counter 417

7.11.4 Remarks on Counter Design 418
Using Storage Elements with CAD Tools 418

7.12.1 Including Storage Elements in
Schematics 418

7.12.2 Using VHDL Constructs for Storage
Elements 421

Using Registers and Counters with CAD

Tools 426

7.13.1 Including Registers and Counters in
Schematics 426

7.13.2 Registers and Counters in VHDL
Code 428

7.13.3 Using VHDL Sequential Statements for

Registers and Counters 430

Design Examples 438

7.14.1 Bus Structure 438

7.14.2 Simple Processor 450

7.14.3 Reaction Timer 463

7.14.4 Register Transfer Level (RTL) Code 468

Timing Analysis of Flip-Flop Circuits 469
Concluding Remarks 471
Examples of Solved Problems
Problems 476

References 483

472

Chapter 8

SYNCHRONOUS SEQUENTIAL
CircuiTts 485

8.1

8.2

8.3
8.4

8.5

8.6

8.7

8.8

Basic Design Steps 487

8.1.1 State Diagram 487

8.1.2 State Table 489

8.1.3 State Assignment 489

8.1.4 Choice of Flip-Flops and Derivation of
Next-State and Output Expressions 491

8.1.5 Timing Diagram 492

8.1.6 Summary of Design Steps 494

State-Assignment Problem 497

8.2.1 One-Hot Encoding 500

Mealy State Model 502

Design of Finite State Machines Using CAD

Tools 507

8.4.1 VHDL Code for Moore-Type FSMs 508

8.4.2 Synthesis of VHDL Code 510

8.4.3 Simulating and Testing the Circuit 512

8.4.4 An Alternative Style of VHDL Code 513

8.4.5 Summary of Design Steps When Using
CAD Tools 513

8.4.6 Specifying the State Assignment in
VHDL Code 515

8.4.7 Specification of Mealy FSMs Using
VHDL 517

Serial Adder Example 519

8.5.1 Mealy-Type FSM for Serial Adder 520

8.5.2 Moore-Type FSM for Serial Adder 522

8.5.3 VHDL Code for the Serial Adder 524

State Minimization 528

8.6.1 Partitioning Minimization
Procedure 530

8.6.2 Incompletely Specified FSMs 537

Design of a Counter Using the Sequential

Circuit Approach 539

8.7.1 State Diagram and State Table for a
Modulo-8 Counter 539

8.7.2 State Assignment 539

8.7.3 Implementation Using D-Type
Flip-Flops 541

8.7.4 Implementation Using JK-Type
Flip-Flops 542

8.7.5 Example—A Different Counter 547

FSM as an Arbiter Circuit 549

8.8.1 Implementation of the Arbiter
Circuit 553

CONTENTS xvii

8.8.2 Minimizing the Output Delays for an
FSM 556
8.8.3 Summary 557
8.9 Analysis of Synchronous Sequential
Circuits 557
8.10 Algorithmic State Machine (ASM)
Charts 561
8.11 Formal Model for Sequential Circuits 565
8.12 Concluding Remarks 566
8.13 Examples of Solved Problems 567
Problems 576
References 581

Chapter 9

ASYNCHRONOUS SEQUENTIAL
Circuits 583

9.1 Asynchronous Behavior 584
9.2 Analysis of Asynchronous Circuits 588
9.3 Synthesis of Asynchronous Circuits 596
9.4 State Reduction 609
9.5 State Assignment 624

9.5.1 Transition Diagram 627

9.5.2 Exploiting Unspecified Next-State

Entries 630
9.5.3 State Assignment Using Additional
State Variables 634

9.54 One-Hot State Assignment 639
9.6 Hazards 640

9.6.1 Static Hazards 641

9.6.2 Dynamic Hazards 645

9.6.3 Significance of Hazards 646
9.7 A Complete Design Example 648

9.7.1 The Vending-Machine Controller 648
9.8 Concluding Remarks 653
9.9 Examples of Solved Problems 655

Problems 663

References 667

Chapter 10
DiGITAL SYSTEM DESIGN 669

10.1 Building Block Circuits 670
10.1.1 Flip-Flops and Registers with Enable
Inputs 670

xviii

10.2

10.3

10.4

CONTENTS

10.1.2 Shift Registers with Enable Inputs 672

10.1.3 Static Random Access Memory
(SRAM) 674

10.1.4 SRAM Blocks in PLDs 679

Design Examples 679

10.2.1 A Bit-Counting Circuit 679

10.2.2 ASM Chart Implied Timing
Information 681

10.2.3 Shift-and-Add Multiplier 683

10.2.4 Divider 692

10.2.5 Arithmetic Mean 702

10.2.6 Sort Operation 708

Clock Synchronization 719

10.3.1 Clock Skew 719

10.3.2 Flip-Flop Timing Parameters 720

10.3.3 Asynchronous Inputs to Flip-Flops 723

10.3.4 Switch Debouncing 724

Concluding Remarks 724

Problems 726

References 730

Chapter 11
TeEsTING OF LoGIc CircuiTs 731

11.1

11.2
11.3

114
11.5
11.6

11.7

11.8

11.9

Fault Model 732

11.1.1 Stuck-at Model 732

11.1.2 Single and Multiple Faults 733
11.1.3 CMOS Circuits 733
Complexity of a Test Set 733

Path Sensitizing 735

11.3.1 Detection of a Specific Fault 737
Circuits with Tree Structure 739
Random Tests 740

Testing of Sequential Circuits 743
11.6.1 Design for Testability 743
Built-in Self-Test 747

11.7.1 Built-in Logic Block Observer 751
11.7.2 Signature Analysis 753

11.7.3 Boundary Scan 754

Printed Circuit Boards 754

11.8.1 Testing of PCBs 756

11.8.2 Instrumentation 757
Concluding Remarks 758

Problems 758

References 761

Chapter 12

COMPUTER AIDED DESIGN
TooLs 763

12.1 Synthesis 764
12.1.1 Netlist Generation 764
12.1.2 Gate Optimization 764
12.1.3 Technology Mapping 766
12.2 Physical Design 770
12.2.1 Placement 773
12.2.2 Routing 774
12.2.3 Static Timing Analysis 775
12.3 Concluding Remarks 777
References 777

Appendix A
VHDL REFERENCE 779

A.1 Documentation in VHDL Code 780
A.2 Data Objects 780
A2.1 Data Object Names 780
A22 Data Object Values and Numbers 780
A23 SIGNAL Data Objects 781
A24 BIT and BIT_VECTOR Types 781
A25 STD_LOGIC and
STD_LOGIC_VECTOR Types 782
A2.6 STD_ULOGIC Type 782
A2 SIGNED and UNSIGNED Types 783
A28 INTEGER Type 784
A29 BOOLEAN Type 784
A.2.10 ENUMERATION Type 784
A.2.11 CONSTANT Data Objects 785
A.2.12 VARIABLE Data Objects 785
A2.13 Type Conversion 785
A2.14 Arrays 786
A.3 Operators 787
A.4 VHDL Design Entity 787
A4 ENTITY Declaration 788
A42 Architecture 788
A.5 Package 790
A.6 Using Subcircuits 791
A.6.1 Declaring a COMPONENT in a
Package 793
A.7 Concurrent Assignment Statements 794
A1 Simple Signal Assignment 795
A7.2 Assigning Signal Values Using
OTHERS 796

A8
A9

A.10

A.ll
A.12

A13 Selected Signal Assignment 797

A4 Conditional Signal Assignment 798

A75 GENERATE Statement 799

Defining an Entity with GENERICs 799

Sequential Assignment Statements 800

A9.1 PROCESS Statement 800

A9.2 IF Statement 802

A93 CASE Statement 802

A9.4 Loop Statements 803

A95 Using a Process for a Combinational
Circuit 803

A9.6 Statement Ordering 805

A.9.7 Using a VARIABLE in a PROCESS 806

Sequential Circuits 811

A.10.1 A Gated D Latch 811

A.10.2 D Flip-Flop 812

A.10.3 Using a WAIT UNTIL Statement 813

A.104 A Flip-Flop with Asynchronous
Reset 814

A.10.5 Synchronous Reset 814

A.10.6 Registers 814

A.10.7 Shift Registers 817

A.10.8 Counters 819

A.10.9 Using Subcircuits with GENERIC
Parameters 819

A.10.10 A Moore-Type Finite State Machine 822

A.10.11 A Mealy-Type Finite State Machine 824

Common Errors in VHDL Code 827

Concluding Remarks 830

References 831

Appendix B

TUTORIAL 1 —INTRODUCTION TO
QuARTUS II CAD SOFTWARE 833

B.1

B.2
B3

B4

Introduction 833

B.1.1 Getting Started 834

Starting a New Project 836

Design Entry Using Schematic Capture 838

B.3.1 Using the Block Editor 838

B.3.2 Synthesizing a Circuit from the
Schematic 846

B.3.3 Simulating the Designed Circuit 848

Design Entry Using VHDL 854

B.4.1 Create Another Project 854

B4.2 Using the Text Editor 854

B.4.3 Synthesizing a Circuit from the VHDL
Code 856

B44 Performing Functional Simulation 856

CONTENTS xix

B4.5 Using Quartus II to Debug VHDL
Code 856

B.5 Mixing Design-Entry Methods 857

B.5.1 Using Schematic Entry at the Top
Level 857

B.5.2 Using VHDL at the Top Level 860
B.6 Quartus II Windows 861
B.7 Concluding Remarks 862

Appendix C

TUTORIAL 2 —IMPLEMENTING
CIRCUITS IN ALTERA DEVICES 863

C.1 Implementing a Circuit in a Cyclone II
FPGA 863

C.1.1 Selecting a Chip 863
Cl1l2 Compiling the Project 864
C.13 Performing Timing Simulation 865
C.l4 Using the Chip Planner 867
C.2 Making Pin Assignments 871

C2.1 Recompiling the Project with Pin
Assignments 874

C.3 Programming and Configuring the FPGA
Device 874

C3.1 JTAG Programming 874
C.4 Concluding Remarks 877

Appendix D

TUTORIAL 3—USING QUARTUS I
TooLs 879

D.1 Implementing an Adder using Quartus II 879
D.1.1 Simulating the Circuit 880

D.1.2 Timing Simulation 882

D.1.3 Implementing the Adder Circuit on the
DE2 Board 885

D.2 Using an LPM Module 885
D.3 Design of a Finite State Machine 892
D.4 Concluding Remarks 897

XX CONTENTS

Appendix E
COMMERCIAL DEVICES 899

E.1 Simple PLDs 899
E.1.1 The 22V10 PAL Device 899
E.2 Complex PLDs 901
E2.1 Altera MAX 7000 902
E.3 Field-Programmable Gate Arrays 904
E3.1 Altera FLEX 10K 904
E3.2 Xilinx XC4000 908
E3.3 Altera APEX 20K 909
E34 Altera Stratix 910
E.3.5 Altera Cyclone, Cyclone II, and
Cyclone III 911

E.3.6
E3.7
E.3.8

E.3.9

Altera Stratix II and Stratix III 911
Xilinx Virtex 912

Xilinx Virtex-II and Virtex-1I Pro,
Virtex-4, and Virtex-5 914

Xilinx Spartan-3 914

E.4 Transistor-Transistor Logic 914

E4.1

TTL Circuit Families 915

References 916

ANSWERS

919

INDEX 934

chapter

DESIGN CONCEPTS

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e Digital hardware components
e An overview of integrated circuit technology

e The design process for digital hardware

2 CHAPTER 1 e DEsiGN CONCEPTS

This book is about logic circuits—the circuits from which computers are built. Proper understanding of
logic circuits is vital for today’s electrical and computer engineers. These circuits are the key ingredient of
computers and are also used in many other applications. They are found in commonly used products, such as
digital watches, various household appliances, CD players, and electronic games, as well as in large systems,
such as the equipment for telephone and television networks.

The material in this book will introduce the reader to the many issues involved in the design of logic
circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived from
elementary ones. We cover the classical theory used in the design of logic circuits in great depth because it
provides the reader with an intuitive understanding of the nature of such circuits. But throughout the book we
also illustrate the modern way of designing logic circuits, using sophisticated computer aided design (CAD)
software tools. The CAD methodology adopted in the book is based on the industry-standard design language
called VHDL. Design with VHDL is first introduced in Chapter 2, and usage of VHDL and CAD tools is an
integral part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. Commonly
available chips that use modern technology may contain hundreds of millions of transistors, as in the case of
computer processors. The basic building blocks for such circuits are easy to understand, but there is nothing
simple about a circuit that contains hundreds of millions of transistors. The complexity that comes with the
large size of logic circuits can be handled successfully only by using highly organized design techniques. We
introduce these techniques in this chapter, but first we briefly describe the hardware technology used to build
logic circuits.

| 1.1 DiciTAL HARDWARE

Logic circuits are used to build computer hardware, as well as many other types of products.
All such products are broadly classified as digital hardware. The reason that the name digital
is used will become clear later in the book—it derives from the way in which information
is represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past
four decades. Until the 1960s logic circuits were constructed with bulky components, such
as transistors and resistors that came as individual parts. The advent of integrated circuits
made it possible to place a number of transistors, and thus an entire circuit, on a single
chip. In the beginning these circuits had only a few transistors, but as the technology
improved they became larger. Integrated circuit chips are manufactured on a silicon wafer,
such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,
which are then placed inside a special type of chip package. By 1970 it was possible to
implement all circuitry needed to realize a microprocessor on a single chip. Although early
microprocessors had modest computing capability by today’s standards, they opened the
door for the information processing revolution by providing the means for implementation
of affordable personal computers. About 30 years ago Gordon Moore, chairman of Intel
Corporation, observed that integrated circuit technology was progressing at an astounding
rate, doubling the number of transistors that could be placed on a chip every 1.5 to 2 years.
This phenomenon, informally known as Moore’s law, continues to the present day. Thus in
the early 1990s microprocessors could be manufactured with a few million transistors, and

1.1 DiGITAL HARDWARE

Figure 1.1 A silicon wafer (courtesy of Altera Corp.).

by the late 1990s it became possible to fabricate chips that contain more than 10 million
transistors. Presently chips may have more than one billion transistors.

Moore’s law is expected to continue to hold true for at least the next decade. A
consortium of integrated circuit associations produces a forecast of how the technology is
expected to evolve. Known as the International Technology Roadmap for Semiconductors
(ITRS) [1], this forecast discusses many aspects of transistor technology, including the
minimum size of features that can be reliably fabricated on an integrated circuit chip. A
sample of data from the ITRS is given in Table 1.1. In 2006 the minimum size of some

Table 1.1 A sample of the International Technology Roadmap for
Semiconductors.

Year
2006 2007 2008 2009 2010 2012
Technology 78 nm 68 nm 59 nm 52 nm 45 nm 36 nm
feature size
Transistors 283 M 357M 449 M 566 M 714 M 1,133 M

per cm?

Transistors 2,430 M 3,061 M 3,857 M 4,859 M 6,122 M 9,718 M
per chip

CHAPTER 1 e DEsiGN CONCEPTS

chip features which could be reliably fabricated was about 78 nm. The first row of the table
indicates that this feature size is expected to reduce steadily to around 36 nm by the year
2012. The minimum feature size determines how many transistors can be placed in a given
amount of chip area. As shown in the table, 283 million transistors per cm? were possible
in 2006, and 1,133 million transistors per cm? is expected to be feasible by the year 2012.
The largest size of a chip that can be reliably manufactured is expected to stay the same
over this time period, at about 858 mm?, which means that chips with nearly 10 billion
transistors will be possible! There is no doubt that this technology will have a huge impact
on all aspects of people’s lives.

The designer of digital hardware may be faced with designing logic circuits that can be
implemented on a single chip or, more likely, designing circuits that involve a number of
chips placed on a printed circuit board (PCB). Frequently, some of the logic circuits can be
realized in existing chips that are readily available. This situation simplifies the design task
and shortens the time needed to develop the final product. Before we discuss the design
process in more detail, we should introduce the different types of integrated circuit chips
that may be used.

There exists a large variety of chips that implement various functions that are useful
in the design of digital hardware. The chips range from very simple ones with low func-
tionality to extremely complex chips. For example, a digital hardware product may require
a microprocessor to perform some arithmetic operations, memory chips to provide storage
capability, and interface chips that allow easy connection to input and output devices. Such
chips are available from various vendors.

For most digital hardware products, it is also necessary to design and build some logic
circuits from scratch. For implementing these circuits, three main types of chips may be
used: standard chips, programmable logic devices, and custom chips. These are discussed
next.

1.1.1 STANDARD CHIPS

Numerous chips are available that realize some commonly used logic circuits. We will
refer to these as standard chips, because they usually conform to an agreed-upon standard
in terms of functionality and physical configuration. Each standard chip contains a small
amount of circuitry (usually involving fewer than 100 transistors) and performs a simple
function. To build a logic circuit, the designer chooses the chips that perform whatever
functions are needed and then defines how these chips should be interconnected to realize
a larger logic circuit.

Standard chips were popular for building logic circuits until the early 1980s. However,
as integrated circuit technology improved, it became inefficient to use valuable space on
PCBs for chips with low functionality. Another drawback of standard chips is that the
functionality of each chip is fixed and cannot be changed.

1.1.2 PROGRAMMABLE LoGIic DEVICES

In contrast to standard chips that have fixed functionality, it is possible to construct chips
that contain circuitry that can be configured by the user to implement a wide range of

1.1 DiGITAL HARDWARE

LU
-
-
=
i
-
HEY
"
S
.'-n:

Figure 1.2 A field-programmable gate array chip (courtesy of
Altera Corp.).

different logic circuits. These chips have a very general structure and include a collection
of programmable switches that allow the internal circuitry in the chip to be configured
in many different ways. The designer can implement whatever functions are needed for
a particular application by choosing an appropriate configuration of the switches. The
switches are programmed by the end user, rather than when the chip is manufactured.
Such chips are known as programmable logic devices (PLDs). We will introduce them in
Chapter 3.

Most types of PLDs can be programmed multiple times. This capability is advantageous
because a designer who is developing a prototype of a product can program a PLD to perform
some function, but later, when the prototype hardware is being tested, can make corrections
by reprogramming the PLD. Reprogramming might be necessary, for instance, if a designed
function is not quite as intended or if new functions are needed that were not contemplated
in the original design.

PLDs are available in a wide range of sizes. They can be used to realize much larger
logic circuits than a typical standard chip can realize. Because of their size and the fact that
they can be tailored to meet the requirements of a specific application, PLDs are widely used
today. One of the most sophisticated types of PLD is known as a field-programmable gate
array (FPGA). FPGAs that contain several hundred million transistors are available [2, 3].
A photograph of an FPGA chip is shown in Figure 1.2. The chip consists of a large number
of small logic circuit elements, which can be connected together using the programmable
switches. The logic circuit elements are arranged in a regular two-dimensional structure.

1.1.3 CustoM-DESIGNED CHIPS

PLDs are available as off-the-shelf components that can be purchased from different sup-
pliers. Because they are programmable, they can be used to implement most logic circuits
found in digital hardware. However, PLDs also have a drawback in that the programmable
switches consume valuable chip area and limit the speed of operation of implemented cir-

CHAPTER 1 e DEsiGN CONCEPTS

cuits. Thus in some cases PLDs may not meet the desired performance or cost objectives.
In such situations it is possible to design a chip from scratch; namely, the logic circuitry
that must be included on the chip is designed first and then an appropriate technology is
chosen to implement the chip. Finally, the chip is manufactured by a company that has the
fabrication facilities. This approach is known as custom or semi-custom design, and such
chips are called custom or semi-custom chips. Such chips are intended for use in specific
applications and are sometimes called application-specific integrated circuits (ASICs).

The main advantage of a custom chip is that its design can be optimized for a specific
task; hence it usually leads to better performance. It is possible to include a larger amount
of logic circuitry in a custom chip than would be possible in other types of chips. The
cost of producing such chips is high, but if they are used in a product that is sold in large
quantities, then the cost per chip, amortized over the total number of chips fabricated, may
be lower than the total cost of off-the-shelf chips that would be needed to implement the
same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve
the same goal, then a smaller area is needed on a PCB that houses the chips in the final
product. This results in a further reduction in cost.

A disadvantage of the custom-design approach is that manufacturing a custom chip
often takes a considerable amount of time, on the order of months. In contrast, if a PLD
can be used instead, then the chips are programmed by the end user and no manufacturing
delays are involved.

1.2 THE DESIGN PROCESS

The availability of computer-based tools has greatly influenced the design process in a wide
variety of design environments. For example, designing an automobile is similar in the
general approach to designing a furnace or a computer. Certain steps in the development
cycle must be performed if the final product is to meet the specified objectives. We will
start by introducing a typical development cycle in the most general terms. Then we will
focus on the particular aspects that pertain to the design of logic circuits.

The flowchart in Figure 1.3 depicts a typical development process. We assume that
the process is to develop a product that meets certain expectations. The most obvious
requirements are that the product must function properly, that it must meet an expected
level of performance, and that its cost should not exceed a given target.

The process begins with the definition of product specifications. The essential features
of the product are identified, and an acceptable method of evaluating the implemented
features in the final product is established. The specifications must be tight enough to
ensure that the developed product will meet the general expectations, but should not be
unnecessarily constraining (that is, the specifications should not prevent design choices
that may lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of
an initial design of the product. This step is difficult to automate. It is usually performed by
a human designer because there is no clear-cut strategy for developing a product’s overall
structure—it requires considerable design experience and intuition.

1.2 THE DESIGN PROCESS

Required product

Define specifications

l

Initial design

/

Simulation Redesign

l

- -

Design correct?

Yes + —
Prototype implementation Make corrections
Testing
Minor errors?

l

Meets specifications?

Finished product

Figure 1.3 The development process.

CHAPTER 1 e DEsiGN CONCEPTS

After the general structure is established, CAD tools are used to work out the details.
Many types of CAD tools are available, ranging from those that help with the design
of individual parts of the system to those that allow the entire system’s structure to be
represented in a computer. When the initial design is finished, the results must be verified
against the original specifications. Traditionally, before the advent of CAD tools, this step
involved constructing a physical model of the designed product, usually including just the
key parts. Today it is seldom necessary to build a physical model. CAD tools enable
designers to simulate the behavior of incredibly complex products, and such simulations
are used to determine whether the obtained design meets the required specifications. If
errors are found, then appropriate changes are made and the verification of the new design
is repeated through simulation. Although some design flaws may escape detection via
simulation, usually all but the most subtle problems are discovered in this way.

When the simulation indicates that the design is correct, a complete physical prototype
of the product is constructed. The prototype is thoroughly tested for conformance with the
specifications. Any errors revealed in the testing must be fixed. The errors may be minor,
and often they can be eliminated by making small corrections directly on the prototype of
the product. In case of large errors, it is necessary to redesign the product and repeat the
steps explained above. When the prototype passes all the tests, then the product is deemed
to be successfully designed and it can go into production.

1.3 DESIGN OF DIGITAL HARDWARE

Our previous discussion of the development process is relevant in a most general way. The
steps outlined in Figure 1.3 are fully applicable in the development of digital hardware.
Before we discuss the complete sequence of steps in this development environment, we
should emphasize the iterative nature of the design process.

1.3.1 Basic DEsigN Loor

Any design process comprises a basic sequence of tasks that are performed in various
situations. This sequence is presented in Figure 1.4. Assuming that we have an initial
concept about what should be achieved in the design process, the first step is to generate
an initial design. This step often requires a lot of manual effort because most designs have
some specific goals that can be reached only through the designer’s knowledge, skill, and
intuition. The next step is the simulation of the design at hand. There exist excellent CAD
tools to assist in this step. To carry out the simulation successfully, it is necessary to have
adequate input conditions that can be applied to the design that is being simulated and later
to the final product that has to be tested. Applying these input conditions, the simulator
tries to verify that the designed product will perform as required under the original product
specifications. If the simulation reveals some errors, then the design must be changed to
overcome the problems. The redesigned version is again simulated to determine whether
the errors have disappeared. This loop is repeated until the simulation indicates a successful
design. A prudent designer expends considerable effort to remedy errors during simulation

1.3 DESIGN OF DIGITAL HARDWARE

| J

Initial design

|

Simulation Redesign

l

Design correct?

Successful design

Figure 1.4 The basic design loop.

because errors are typically much harder to fix if they are discovered late in the design
process. Even so, some errors may not be detected during simulation, in which case they
have to be dealt with in later stages of the development cycle.

1.3.2 STRUCTURE OF A COMPUTER

To understand the role that logic circuits play in digital systems, consider the structure of
a typical computer, as illustrated in Figure 1.5a. The computer case houses a number of
printed circuit boards (PCBs), a power supply, and (not shown in the figure) storage units,
like a hard disk and DVD or CD-ROM drives. Each unit is plugged into a main PCB,
called the motherboard. As indicated on the bottom of Figure 1.5a, the motherboard holds
several integrated circuit chips, and it provides slots for connecting other PCBs, such as
audio, video, and network boards.

Figure 1.5b illustrates the structure of an integrated circuit chip. The chip comprises
a number of subcircuits, which are interconnected to build the complete circuit. Examples
of subcircuits are those that perform arithmetic operations, store data, or control the flow
of data. Each of these subcircuits is a logic circuit. As shown in the middle of the figure, a
logic circuit comprises a network of connected logic gates. Each logic gate performs a very
simple function, and more complex operations are realized by connecting gates together.

CHAPTER 1 e DEsiGN CONCEPTS

Computer P .
0 Power supply "
7
1 .
Y Motherboard
' . Printed circuit boards
°n

Integrated circuits, -~ o
connectors, and -’ .
components .’

! NNnOnnn

{}
{

oo

Motherboard

Figure 1.5 A digital hardware system (Part a).

Subcircuits
in a chip

1.3 DESIGN OF DIGITAL HARDWARE

(L] L[]][]

1]
| |
N

(L0111 (11]
gu ooyl

OO0 00 0o

\ Transistor
' ___onachip

Figure 1.5 A digital hardware system (Part b).

12

CHAPTER 1 e DEsiGN CONCEPTS

Logic gates are built with transistors, which in turn are implemented by fabricating various
layers of material on a silicon chip.

This book is primarily concerned with the center portion of Figure 1.5b—the design
of logic circuits. We explain how to design circuits that perform important functions, such
as adding, subtracting, or multiplying numbers, counting, storing data, and controlling the
processing of information. We show how the behavior of such circuits is specified, how
the circuits are designed for minimum cost or maximum speed of operation, and how the
circuits can be tested to ensure correct operation. We also briefly explain how transistors
operate, and how they are built on silicon chips.

1.3.3 DESIGN OF A DIGITAL HARDWARE UNIT

As shown in Figure 1.5, digital hardware products usually involve one or more PCBs that
contain many chips and other components. Development of such products starts with the
definition of the overall structure. Then the required integrated circuit chips are selected,
and the PCBs that house and connect the chips together are designed. If the selected chips
include PLDs or custom chips, then these chips must be designed before the PCB-level
design is undertaken. Since the complexity of circuits implemented on individual chips
and on the circuit boards is usually very high, it is essential to make use of good CAD tools.

A photograph of a PCB is given in Figure 1.6. The PCB is a part of a large computer
system designed at the University of Toronto. This computer, called NUMAchine [4,5], is
a multiprocessor, which means that it contains many processors that can be used together
to work on a particular task. The PCB in the figure contains one processor chip and various
memory and support chips. Complex logic circuits are needed to form the interface between
the processor and the rest of the system. A number of PLDs are used to implement these
logic circuits.

To illustrate the complete development cycle in more detail, we will consider the steps
needed to produce a digital hardware unit that can be implemented on a PCB. This hardware
could be viewed as a very complex logic circuit that performs the functions defined by the
product specifications. Figure 1.7 shows the design flow, assuming that we have a design
concept that defines the expected behavior and characteristics of this large circuit.

An orderly way of dealing with the complexity involved is to partition the circuit into
smaller blocks and then to design each block separately. Breaking down a large task into
more manageable smaller parts is known as the divide-and-conquer approach. The design
of each block follows the procedure outlined in Figure 1.4. The circuitry in each block is
defined, and the chips needed to implement it are chosen. The operation of this circuitry is
simulated, and any necessary corrections are made.

Having successfully designed all blocks, the interconnection between the blocks must
be defined, which effectively combines these blocks into a single large circuit. Now it
is necessary to simulate this complete circuit and correct any errors. Depending on the
errors encountered, it may be necessary to go back to the previous steps as indicated by the
paths A, B, and C in the flowchart. Some errors may be caused by incorrect connections
between the blocks, in which case these connections have to be redefined, following path C.
Some blocks may not have been designed correctly, in which case path B is followed and the
erroneous blocks are redesigned. Another possibility is that the very first step of partitioning

1.3 DESIGN OF DIGITAL HARDWARE

=
=
| =
I=
|=
=
—
=
==
s
=
=
=
=
i
—=
Jj —
=
—=
=
—
—
—
“".--s
“l

| —
1=
=
=
1=
—
-
—
=
—
=

s2scpesw

Figure 1.6 A printed circuit board.

the overall large circuit into blocks was not done well, in which case path A is followed.
This may happen, for example, if none of the blocks implement some functionality needed
in the complete circuit.

Successful completion of functional simulation suggests that the designed circuit will
correctly perform all of its functions. The next step is to decide how to realize this circuit
on a PCB. The physical location of each chip on the board has to be determined, and the
wiring pattern needed to make connections between the chips has to be defined. We refer
to this step as the physical design of the PCB. CAD tools are relied on heavily to perform
this task automatically.

Once the placement of chips and the actual wire connections on the PCB have been
established, it is desirable to see how this physical layout will affect the performance of
the circuit on the finished board. It is reasonable to assume that if the previous functional
simulation indicated that all functions will be performed correctly, then the CAD tools

13

14

CHAPTER 1 e DEsiGN CONCEPTS

/

Partition

v

v !

-t

Design one block o o o Design one block

| 7

Define interconnection between blocks

l

Functional simulation of complete system

;

Correct?

No

Yes —

v

Physical mapping

l

Timing simulation

l

Correct? >

Yes

Implementation

Figure 1.7 Design flow for logic circuits.

1.3 DESIGN OF DIGITAL HARDWARE

used in the physical design step will ensure that the required functional behavior will not
be corrupted by placing the chips on the board and wiring them together to realize the
final circuit. However, even though the functional behavior may be correct, the realized
circuit may operate more slowly than desired and thus lead to inadequate performance. This
condition occurs because the physical wiring on the PCB involves metal traces that present
resistance and capacitance to electrical signals and thus may have a significant impact on the
speed of operation. To distinguish between simulation that considers only the functionality
of the circuit and simulation that also considers timing behavior, it is customary to use
the terms functional simulation and timing simulation. A timing simulation may reveal
potential performance problems, which can then be corrected by using the CAD tools to
make changes in the physical design of the PCB.

Having completed the design process, the designed circuit is ready for physical im-
plementation. The steps needed to implement a prototype board are indicated in Figure
1.8. A first version of the board is built and tested. Most minor errors that are detected can
usually be corrected by making changes directly on the prototype board. This may involve
changes in wiring or perhaps reprogramming some PLDs. Larger problems require a more
substantial redesign. Depending on the nature of the problem, the designer may have to
return to any of the points A, B, C, or D in the design process of Figure 1.7.

We have described the development process where the final circuit is implemented
using many chips on a PCB. The material presented in this book is directly applicable to

Implementation

Build prototype

Testing Modify prototype

Yes

No

No

Yes
Finished PCB GotoA,B,C,orDinFigure 1.7

Figure 1.8 Completion of PCB development.

15

16

CHAPTER 1 e DEsiGN CONCEPTS

this type of design problem. However, for practical reasons the design examples that appear
in the book are relatively small and can be realized in a single integrated circuit, either a
custom-designed chip or a PLD. All the steps in Figure 1.7 are relevant in this case as well,
with the understanding that the circuit blocks to be designed are on a smaller scale.

1.4 Locic Circult DESIGN IN THIS BoOK

In this book we use PLDs extensively to illustrate many aspects of logic circuit design.
We selected this technology because it is widely used in real digital hardware products
and because the chips are user programmable. PLD technology is particularly well suited
for educational purposes because many readers have access to facilities for programming
PLDs, which enables the reader to actually implement the sample circuits. To illustrate
practical design issues, in this book we use two types of PLDs—they are the two types
of devices that are widely used in digital hardware products today. One type is known as
complex programmable logic devices (CPLDs) and the other as field-programmable gate
arrays (FPGAs). These chips are introduced in Chapter 3.

To gain practical experience and a deeper understanding of logic circuits, we advise the
reader to implement the examples in this book using CAD tools. Most of the major vendors
of CAD systems provide their tools through university programs for educational use. Some
examples are Altera, Cadence, Mentor Graphics, Synopsys, Synplicity, and Xilinx. The
CAD systems offered by any of these companies can be used equally well with this book.
For those who do not already have access to CAD tools, we include Altera’s Quartus I CAD
system on a CD-ROM. This state-of-the-art software supports all phases of the design cycle
and is powerful and easy to use. The software is easily installed on a personal computer,
and we provide a sequence of complete step-by-step tutorials in Appendices B, C, and D to
illustrate the use of CAD tools in concert with the book.

For educational purposes, some PLD manufacturers provide laboratory development
printed circuit boards that include one or more PLD chips and an interface to a personal
computer. Once a logic circuit has been designed using the CAD tools, the circuit can be
downloaded into a PLD on the board. Inputs can then be applied to the PLD by way of
simple switches, and the generated outputs can be examined. These laboratory boards are
described on the World Wide Web pages of the PLD suppliers.

1.5 THEORY AND PRACTICE

Modern design of logic circuits depends heavily on CAD tools, but the discipline of logic
design evolved long before CAD tools were invented. This chronology is quite obvious
because the very first computers were built with logic circuits, and there certainly were no
computers available on which to design them!

Numerous manual design techniques have been developed to deal with logic circuits.
Boolean algebra, which we will introduce in Chapter 2, was adopted as a mathematical
means for representing such circuits. An enormous amount of “theory” was developed,

1.6 BINARY NUMBERS

showing how certain design issues may be treated. To be successful, a designer had to
apply this knowledge in practice.

CAD tools not only made it possible to design incredibly complex circuits but also
made the design work much simpler in general. They perform many tasks automatically,
which may suggest that today’s designer need not understand the theoretical concepts used
in the tasks performed by CAD tools. An obvious question would then be, Why should one
study the theory that is no longer needed for manual design? Why not simply learn how to
use the CAD tools?

There are three big reasons for learning the relevant theory. First, although the CAD
tools perform the automatic tasks of optimizing a logic circuit to meet particular design
objectives, the designer has to give the original description of the logic circuit. If the
designer specifies a circuit that has inherently bad properties, then the final circuit will also
be of poor quality. Second, the algebraic rules and theorems for design and manipulation
of logic circuits are directly implemented in today’s CAD tools. It is not possible for a user
of the tools to understand what the tools do without grasping the underlying theory. Third,
CAD tools offer many optional processing steps that a user can invoke when working on
a design. The designer chooses which options to use by examining the resulting circuit
produced by the CAD tools and deciding whether it meets the required objectives. The
only way that the designer can know whether or not to apply a particular option in a given
situation is to know what the CAD tools will do if that option is invoked—again, this implies
that the designer must be familiar with the underlying theory. We discuss the classical logic
circuit theory extensively in this book, because it is not possible to become an effective
logic circuit designer without understanding the fundamental concepts.

But there is another good reason to learn some logic circuit theory even if it were not
required for CAD tools. Simply put, it is interesting and intellectually challenging. In the
modern world filled with sophisticated automatic machinery, it is tempting to rely on tools as
a substitute for thinking. However, in logic circuit design, as in any type of design process,
computer-based tools are not a substitute for human intuition and innovation. Computer-
based tools can produce good digital hardware designs only when employed by a designer
who thoroughly understands the nature of logic circuits.

17

1.6 BINARY NUMBERS

In section 1.1 we mentioned that information is represented in logic circuits as electronic
signals. Each of these electronic signals can be thought of as providing one digit of infor-
mation. To make the design of logic circuits easier, each digit is allowed to take on only two
possible values, usually denoted as 0 and 1. This means that all information in logic circuits
is represented as combinations of 0 and 1 digits. Before beginning our discussion of logic
circuits, in Chapter 2, it will be helpful to examine how numbers can be represented using
only the digits O and 1. At this point we will limit the discussion to just positive integers,
because these are the simplest kind of numbers.

In the familiar decimal system, a number consists of digits that have 10 possible values,
from O to 9, and each digit represents a multiple of a power of 10. For example, the number
8547 represents 8 x 10° +5 x 10> + 4 x 10" + 7 x 10°. We do not normally write the

CHAPTER 1 e DEsiGN CONCEPTS

powers of 10 with the number, because they are implied by the positions of the digits. In
general, a decimal integer is expressed by an n-tuple comprising n decimal digits

D=d, 1d,—---didyp
which represents the value
VD) =d,_; x 10" ' +d,_p x 10724+ +d; x 10" +dy x 10°

This is referred to as the positional number representation.

Because the digits have 10 possible values and each digit is weighted as a power of
10, we say that decimal numbers are base-10, or radix-10 numbers. Decimal numbers
are familiar, convenient, and easy to understand. However, since digital circuits represent
information using only the values 0 and 1, it is not practical to have digits that can assume
ten values. In logic circuits it is more appropriate to use the binary, or base-2, system,
because it has only the digits 0 and 1. Each binary digit is called a bit. In the binary number
system, the same positional number representation is used so that

B = bn—lbn—Z T blb()
represents an integer that has the value

VB) =byy1 x 2" b by s x 2724 oo by x 2 by x 2° [1.1]

n—1
= Z b,’ X 2i
i=0
For example, the binary number 1101 represents the value

V=1x24+1x2240x2"+1x2°

Because a particular digit pattern has different meanings for different radices, we will
indicate the radix as a subscript when there is potential for confusion. Thus to specify that
1101 is a base-2 number, we will write (1101),. Evaluating the preceding expression for V
gives V. =8 +4 41 = 13. Hence

(1101)2 = (13)10

Note that the range of integers that can be represented by a binary number depends on the
number of bits used. Table 1.2 lists the first 15 positive integers and shows their binary
representations using four bits. An example of a larger number is (10110111), = (183)4.
In general, using n bits allows representation of integers in the range 0 to 2" — 1.

In a binary number the right-most bit is usually referred to as the least-significant bit
(LSB). The left-most bit, which has the highest power of 2 associated with it, is called the
most-significant bit (MSB). In digital systems it is often convenient to consider several bits
together as a group. A group of four bits is called a nibble, and a group of eight bits is called
a byte.

1.6.1 CONVERSION BETWEEN DECIMAL AND BINARY SYSTEMS

A binary number is converted into a decimal number simply by applying Equation 1.1 and
evaluating it using decimal arithmetic. Converting a decimal number into a binary number

1.6 BINARY NUMBERS

Table 1.2 Numbers in decimal

and binary.
Decimal Binary
representation representation
00 0000
01 0001
02 0010
03 0011
04 0100
05 0101
06 0110
07 0111
08 1000
09 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

is not quite as straightforward. The conversion can be performed by successively dividing
the decimal number by 2 as follows. Suppose that a decimal number D = dj_; - - - d1dy,
with a value V, is to be converted into a binary number B = b, - - - byb1by. Thus

V=by x 27 4o by x 22+ by x 21 + by
If we divide V by 2, the result is

v n—2 | bo

—=b,,_1><2 ++b2X2 +b1+—

2 2

The quotient of this integer division is b,_; x 2"~2 4 - - + by x 2+ by, and the remainder
is by. If the remainder is O, then by = 0; if it is 1, then by = 1. Observe that the quotient
is just another binary number, which comprises n — 1 bits, rather than » bits. Dividing this
number by 2 yields the remainder b,. The new quotient is

by x 2" 4 4 by

Continuing the process of dividing the new quotient by 2, and determining one bit in each
step, will produce all bits of the binary number. The process continues until the quotient
becomes 0. Figure 1.9 illustrates the conversion process, using the example (857),y =
(1101011001),. Note that the least-significant bit (LSB) is generated first and the most-
significant bit (MSB) is generated last.

So far, we have considered only the representation of positive integers. In Chapter
5 we will complete the discussion of number representation, by explaining how negative
numbers are handled and how fixed-point and floating-point numbers may be represented.
We will also explain how arithmetic operations are performed in computers. But first, in
Chapters 2 to 4, we will introduce the basic concepts of logic circuits.

19

20

CHAPTER 1 e DEsiGN CONCEPTS

Convert (857)19
Remainder
857+ 2 = 428 1 LSB
428+ 2 = 214 0
214+ 2 = 107 0
107+ 2 = 53 1
53+ 2 = 26 1
26+2 = 13 0
13+2 = 6 1
6+-2 = 3 0
3+2 =1 1
1+2 =0 1 MSB

Result is (1101011001),

Figure 1.9 Conversion from decimal to binary.

| REFERENCES

1.
2.

“International Technology Roadmap for Semiconductors,” http://www.itrs.net

Altera Corporation, “Stratix III Field Programmable Gate Arrays,”
http://www.altera.com

Xilinx Corporation, “Virtex-5 Field Programmable Gate Arrays,”
http://www.xilinx.com

S. Brown, N. Manjikian, Z. Vranesic, S. Caranci, A. Grbic, R. Grindley, M. Gusat,

K. Loveless, Z. Zilic, and S. Srbljic, “Experience in Designing a Large-Scale
Multiprocessor Using Field-Programmable Devices and Advanced CAD Tools,” 33rd
IEEE Design Automation Conference, Las Vegas, June 1996.

A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K. Loveless,
N. Manjikian, S. Srbljic, M. Stumm, Z. Vranesic, and Z. Zilic, “ The Design and
Implementation of the NUMAchine Multiprocessor,” IEEE Design Automation
Conference, San Francisco, June 1998.

http://www.itrs.net
http://www.altera.com
http://www.xilinx.com

chapter

2

INTRODUCTION TO LoGIc CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e Logic functions and circuits

e Boolean algebra for dealing with logic functions

e Logic gates and synthesis of simple circuits

e CAD tools and the VHDL hardware description language

21

22 CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems where performing arithmetic operations on numbers is not of
primary interest. For example, in a myriad of control applications actions are determined by some simple
logical operations on input information, without having to do extensive numerical computations.

Logic circuits perform operations on digital signals and are usually implemented as electronic circuits
where the signal values are restricted to a few discrete values. In binary logic circuits there are only two
values, 0 and 1. In decimal logic circuits there are 10 values, from 0 to 9. Since each signal value is naturally
represented by a digit, such logic circuits are referred to as digital circuits. In contrast, there exist analog
circuits where the signals may take on a continuous range of values between some minimum and maximum
levels.

In this book we deal with binary circuits, which have the dominant role in digital technology. We hope to
provide the reader with an understanding of how these circuits work, how are they represented in mathematical
notation, and how are they designed using modern design automation techniques. We begin by introducing
some basic concepts pertinent to the binary logic circuits.

| 2.1 VARIABLES AND FUNCTIONS

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switch that has two states. If a given switch is controlled by an input
variable x, then we will say that the switch is open if x = 0 and closed if x = 1, as illustrated
in Figure 2.1a. We will use the graphical symbol in Figure 2.1b to represent such switches
in the diagrams that follow. Note that the control input x is shown explicitly in the symbol.
In Chapter 3 we will explain how such switches are implemented with transistors.
Consider a simple application of a switch, where the switch turns a small lightbulb
on or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides
the power source. The lightbulb glows when sufficient current passes through its filament,
which is an electrical resistance. The current flows when the switch is closed, that is, when

\
|

(a) Two states of a switch

S
|

X

(b) Symbol for a switch

Figure 2.1 A binary switch.

2.1 VARIABLES AND FUNCTIONS

S |
J_ Light

i) |

(a) Simple connection to a battery

Battery

Power J_ ° I

supply I ¥ Light
L L

(b) Using a ground connection as the return path

Figure 2.2 A light controlled by a switch.

x = 1. In this example the input that causes changes in the behavior of the circuit is the
switch control x. The output is defined as the state (or condition) of the light, which we
will denote by the letter L. If the light is on, we will say that L = 1. If the the light is off,
we will say that L = 0. Using this convention, we can describe the state of the light as a
function of the input variable x. Since L = 1 if x = 1 and L = 0 if x = 0, we can say that

Lx)=x

This simple logic expression describes the output as a function of the input. We say that
L(x) = xis a logic function and that x is an input variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by
a power supply of a certain voltage, perhaps 5 volts. One side of the power supply is
connected to ground, as shown in Figure 2.2b. The ground connection may also be used as
the return path for the current, to close the loop, which is achieved by connecting one side
of the light to ground as indicated in the figure. Of course, the light can also be connected
by a wire directly to the grounded side of the power supply, as in Figure 2.2a.

Consider now the possibility of using two switches to control the state of the light. Let
x; and x; be the control inputs for these switches. The switches can be connected either
in series or in parallel as shown in Figure 2.3. Using a series connection, the light will be
turned on only if both switches are closed. If either switch is open, the light will be off.
This behavior can be described by the expression

L(x1,x) = x1 - x2
where L=1ifx; =1andx, =1,

L = 0 otherwise.

23

24

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

S S |
Power i [[

Light

supply I X1 X
1

(a) The logical AND function (series connection)

S
[
X1
Power .
supply I S Light
i ! L
= x =

(b) The logical OR function (parallel connection)

Figure 2.3 Two basic functions.

The *“-” symbol is called the AND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.

The parallel connection of two switches is given in Figure 2.3b. In this case the light
will be on if either x; or x; switch is closed. The light will also be on if both switches are
closed. The light will be off only if both switches are open. This behavior can be stated as

L(x1,x2) = x1 +x2
where L=1ifxy;=1lorx,=1lorifx;=x =1,
L=Oifx1 =.X2=0.

The + symbol is called the OR operator, and the circuit in Figure 2.3b is said to implement
a logical OR function.

In the above expressions for AND and OR, the output L(x, x;) is a logic function with
input variables x; and x,. The AND and OR functions are two of the most important logic
functions. Together with some other simple functions, they can be used as building blocks
for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L(xy, x2,x3) = (X1 +x2) - X3

The light is on if x3 = 1 and, at the same time, at least one of the x; or x; inputs is equal
to 1.

2.2 INVERSION

supply

S
xl
1 S —|
Power I .
I S X3 Light

Figure 2.4 A series-parallel connection.

25

2.2 INVERSION

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

Lix) =X
where L=1ifx=0,
L=0ifx=1

The value of this function is the inverse of the value of the input variable. Instead of
using the word inverse, it is more common to use the term complement. Thus we say that
L(x) is a complement of x in this example. Another frequently used term for the same
operation is the NOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top of x. This
notation is probably the best from the visual point of view. However, when complements

—e

R
Wy
Power J_

supply I x-S Light

Figure 2.5 An inverting circuit.

26

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is
placed after the variable, or the exclamation mark (!) or the tilde character (~) or the word
NOT is placed in front of the variable to denote the complementation. Thus the following
are equivalent:

Xx=x =Ix =~x = NOTx

The complement operation can be applied to a single variable or to more complex
operations. For example, if

fxi,x) = x1+x
then the complement of f is
fGLx) =X +x

This expression yields the logic value 1 only when neither x| nor x; is equal to 1, that is,
when x; = x, = 0. Again, the following notations are equivalent:

Xi+x = (0 +x) =10 +x) =~ +x) = NOT (x| +x2)

2.3 TRrRuTH TABLES

We have introduced the three most basic logic operations—AND, OR, and complement—by
relating them to simple circuits built with switches. This approach gives these operations a
certain “physical meaning.” The same operations can also be defined in the form of a table,
called a truth table, as shown in Figure 2.6. The first two columns (to the left of the heavy
vertical line) give all four possible combinations of logic values that the variables x; and x,
can have. The next column defines the AND operation for each combination of values of x;
and x,, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term, valuation, to denote such a combination of logic values.

X1 X2 X1 X2 | X1+ X2

== o O
_ OoOr o
o oo
=)

AND OR

Figure 2.6 A truth table for the AND and OR operations.

2.4 Locic GATES AND NETWORKS

X1 X2 X3 || X1 :Xo+X3 | X1+ X2+ X3
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 2.7 Three-input AND and OR operations.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such atable is given in Figure
2.7, which defines three-input AND and OR functions. For four input variables the truth
table has 16 rows, and so on. In general, for n input variables the truth table has 2" rows.

The AND and OR operations can be extended to n variables. An AND function
of variables x1, x,, ..., x, has the value 1 only if all n variables are equal to 1. An OR
function of variables xi, x,, ..., x, has the value 1 if at least one, or more, of the variables
is equal to 1.

27

2.4 LocGic GATES AND NETWORKS

The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called a logic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are
augmented to accommodate a greater number of inputs. We will show how logic gates are
built using transistors in Chapter 3.

A larger circuit is implemented by a network of gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

Xl —
x1~x2 i x1~x2~...~xn
X2 — .

¥
x x]+x2 : x1+x2+..,+xn

(b) OR gates

i

(c) NOT gate

Figure 2.8 The basic gates.

X3

*
*2)
f = (xl +x2)‘x3

Figure 2.9 The function from Figure 2.4.

the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can
be implemented with a number of different networks. Some of these networks are simpler
than others, hence searching for the solutions that entail minimum cost is prudent.

In technical jargon a network of gates is often called a logic network or simply a logic
circuit. We will use these terms interchangeably.

2.4 Locic GATES AND NETWORKS

2.4.1 ANALYSIS OF A LoGgIc NETWORK

A designer of digital systems is faced with two basic issues. For an existing logic network, it
must be possible to determine the function performed by the network. This task is referred
to as the analysis process. The reverse task of designing a new network that implements a
desired functional behavior is referred to as the synthesis process. The analysis process is
rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To determine its
functional behavior, we can consider what happens if we apply all possible input signals to
it. Suppose that we start by making x; = x, = 0. This forces the output of the NOT gate
to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs to the
OR gate is 1, the output of this gate will be 1. Therefore, f = 1 if x; = x, = 0. If we let
x; = 0 and x, = 1, then no change in the value of f will take place, because the outputs of
the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply x; = 1 and
x, = 0, then the output of the NOT gate changes to 0 while the output of the AND gate
remains at 0. Both inputs to the OR gate are then equal to 0; hence the value of f will be 0.
Finally, let x; = x, = 1. Then the output of the AND gate goes to 1, which in turn causes
f tobe equal to 1. Our verbal explanation can be summarized in the form of the truth table
shown in Figure 2.10b.

Timing Diagram

We have determined the behavior of the network in Figure 2.10a by considering the four
possible valuations of the inputs x| and x,. Suppose that the signals that correspond to these
valuations are applied to the network in the order of our discussion; that is, (x1, x2) = (0, 0)
followed by (0, 1), (1, 0), and (1, 1). Then changes in the signals at various points in the
network would be as indicated in blue in the figure. The same information can be presented
in graphical form, known as a timing diagram, as shown in Figure 2.10c. The time runs
from left to right, and each input valuation is held for some fixed period. The figure shows
the waveforms for the inputs and output of the network, as well as for the internal signals
at the points labeled A and B.

The timing diagram in Figure 2.10c shows that changes in the waveforms at points A
and B and the output f take place instantaneously when the inputs x; and x, change their
values. These idealized waveforms are based on the assumption that logic gates respond
to changes on their inputs in zero time. Such timing diagrams are useful for indicating
the functional behavior of logic circuits. However, practical logic gates are implemented
using electronic circuits which need some time to change their states. Thus, there is a delay
between a change in input values and a corresponding change in the output value of a gate.
In chapters that follow we will use timing diagrams that incorporate such delays.

Timing diagrams are used for many purposes. They depict the behavior of a logic
circuit in a form that can be observed when the circuit is tested using instruments such as
logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show
the designer how a given circuit is expected to behave before it is actually implemented
electronically. We will introduce the CAD tools later in this chapter and will make use of
them throughout the book.

29

30

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

. 0-0—>1—1 >01%1%0—>0
| °
A

 \ 050501 |B
|/

1-51-50->1

0-51—-50—>1

)
(a) Network that implements f = 5(1+x1 "Xy
x| X, |f(x1,x2) A|B
0 0 1 110
0 1 1 110
1 0 0 0|0
1 1 1 0|1
(b) Truth table
1
X 0 I
1
) 0 I I I
1
A |
1 I—
B 0
il | | _
0 — Time

(c) Timing diagram

. 0-50—-1—1 Dolﬁlﬁ()%o
1

0-51—-50—>1

1-51-50->1

)

(d) Network that implements g = x +X,

1

Figure 2.10 An example of logic networks.

Functionally Equivalent Networks

Now consider the network in Figure 2.10d. Going through the same analysis procedure,
we find that the output g changes in exactly the same way as f does in part (@) of the figure.
Therefore, g(x, x2) = f(x1,x2), which indicates that the two networks are functionally
equivalent; the output behavior of both networks is represented by the truth table in Figure

2.5 BOOLEAN ALGEBRA

2.10b. Since both networks realize the same function, it makes sense to use the simpler
one, which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,
probably having different costs. This raises an important question: How does one find the
best implementation for a given function? Many techniques exist for synthesizing logic
functions. We will discuss the main approaches in Chapter 4. For now, we should note that
some manipulation is needed to transform the more complex network in Figure 2.10a into
the network in Figure 2.10d. Since f (x;, x2) = X 4+ x1 - x» and g(x1, x) = X| + x, there
must exist some rules that can be used to show the equivalence

X1 +X1-X%=X+x2

We have already established this equivalence through detailed analysis of the two circuits
and construction of the truth table. But the same outcome can be achieved through algebraic
manipulation of logic expressions. In the next section we will discuss a mathematical
approach for dealing with logic functions, which provides the basis for modern design
techniques.

31

2.5 BOOLEAN ALGEBRA

In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known as Boolean algebra. It was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra

Like any algebra, Boolean algebra is based on a set of rules that are derived from a
small number of basic assumptions. These assumptions are called axioms. Let us assume
that Boolean algebra B involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:

la. 0-0=0
Ib. 14+1=1
2a. 1-1=1
2b. 04+0=0

3a. 0-1=1-0=0

3. 1+0=0+1=1
4da. Ifx=0,thenx =1
4b. Ifx=1,thenx =0

32

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

Single-Variable Theorems

From the axioms we can define some rules for dealing with single variables. These
rules are often called theorems. If x is a variable in B, then the following theorems hold:

5a. x-0=0
5b. x+1=1
6a. x-1=x
6b. x+0=x
Ta. x-x=x
7b. x+x=x
8a. x-x=0
8. x+x=1
9. X=x

Itis easy to prove the validity of these theorems by perfect induction, that is, by substituting
the values x = 0 and x = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0 - 0 = 0, which is true
according to axiom la. Similarly, if x = 1, then theorem 5a states that 1 - 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality

Notice that we have listed the axioms and the single-variable theorems in pairs. This
is done to reflect the important principle of duality. Given a logic expression, its dual is
obtained by replacing all 4+ operators with - operators, and vice versa, and by replacing
all Os with 1s, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader will
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties

To enable us to deal with a number of variables, it is useful to define some two- and
three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to as properties. They are known by the names indicated below.
If x, y, and z are the variables in B, then the following properties hold:

10a. x-y=y-x Commutative
10b. x+y=y+x

la. x-(y-2)=x-y) -z Associative
1. x+(y+z2)=x+y) +z

12a. x-(y+2)=x-y+x-z2 Distributive

12b. x+y-z=x+y) - (x+2)
13a. x+x-y=x Absorption

2.5 BOOLEAN ALGEBRA

X Yy Xy | Xy | Xy |X+Yy

0 0 0 1 111 1

0 1 0 1 110 1

1 0 0 1 01 1

1 1 1 0 00 0
LHS RHS

Figure 2.11 Proof of DeMorgan’s theorem in 15a.

13b. x-(x+y) =x

14a. x-y+x-y=x Combining

14b. (x+y)-x+y)=x

15a. x-y=Xx+Yy DeMorgan’s theorem
I5h. x+y=Xx-y

16a. x+Xx-y=x+y

16b. x-(x+y)=x-y

17a. x-y+y-z+Xx-z=x-y+XxX-2 Consensus

7. (x+y)-0+2)-G+2)=C+y) - X+2)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.11 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the 4 and - operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

33

Let us prove the validity of the logic equation
(1 +2x3) - (X1 +X3) = x1 - X3 + X1 - X3

The left-hand side can be manipulated as follows. Using the distributive property, 12a,
gives

LHS = (x; +x3) - X1 + (x1 +x3) - X3

Example 2.1

34

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

Applying the distributive property again yields
LHS =x1 - X1 +x3 - X1 + X1 - X3 + X3 - X3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-
gous to multiplication in ordinary algebra. Next, according to theorem 8a, the terms x; - X;
and x3 - X3 are both equal to 0. Therefore,

LHS=0+4+x3-X; +x1-x3+0
From 60 it follows that
LHS = x3 - X1 + x1 - X3
Finally, using the commutative property, 10a and 10b, this becomes
LHS = x; - X3 + X - x3

which is the same as the right-hand side of the initial equation.

Example 2.2

Consider the logic equation
X1 X3+ X2 X3+ X1 X3+ X2 X3 =X X2+ XX XX
The left-hand side can be manipulated as follows

LHS =x; - X3+ x; - x3+ X - X3+ X -x3 using 10b

=x - (X3 +x3) + X2+ (3 + x3) using 12a
=x1-14+x-1 using 8b
=x1+X using 6a

The right-hand side can be manipulated as

RHS =X; - X +x; - (x +X2) using 12a

=X X +x-1 using 8b
=X1- X2+ X1 using 6a
=X+ XX using 10b
=x; + X2 using 16a

Being able to manipulate both sides of the initial equation into identical expressions estab-
lishes the validity of the equation. Note that the same logic function is represented by either
the left- or the right-hand side of the above equation; namely

fxr, X2, x3) = X1 - X3 + X2 - X3+ X1 - X3 + X2 X3
=X X2+ X1 X2+ X1 X2
As a result of manipulation, we have found a much simpler expression
F(xr,x0,x3) = x1 +X2

which also represents the same function. This simpler expression would result in a lower-
cost logic circuit that could be used to implement the function.

2.5 BOOLEAN ALGEBRA

Examples 2.1 and 2.2 illustrate the purpose of the axioms, theorems, and properties
as a mechanism for algebraic manipulation. Even these simple examples suggest that it is
impractical to deal with highly complex expressions in this way. However, these theorems
and properties provide the basis for automating the synthesis of logic functions in CAD
tools. To understand what can be achieved using these tools, the designer needs to be aware
of the fundamental concepts.

2.5.1 THE VENN DIAGRAM

We have suggested that perfect induction can be used to verify the theorems and properties.
This procedure is quite tedious and not very informative from the conceptual point of view.
A simple visual aid that can be used for this purpose also exists. It is called the Venn
diagram, and the reader is likely to find that it provides for a more intuitive understanding
of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical
illustration of various operations and relations in the algebra of sets. A set s is a collection
of elements that are said to be the members of s. In the Venn diagram the elements of
a set are represented by the area enclosed by a contour such as a square, a circle, or an
ellipse. For example, in a universe N of integers from 1 to 10, the set of even numbers is
E =1{2,4,6,8, 10}. Acontour representing E encloses the even numbers. The odd numbers
form the complement of E£; hence the area outside the contour represents E= {1,3,5,7,9}.

Since in Boolean algebra there are only two values (elements) in the universe, B =
{0, 1}, we will say that the area within a contour corresponding to a set s denotes that s = 1,
while the area outside the contour denotes s = 0. In the diagram we will shade the area
where s = 1. The concept of the Venn diagram is illustrated in Figure 2.12. The universe B
is represented by a square. Then the constants 1 and O are represented as shown in parts (a)
and (b) of the figure. A variable, say, x, is represented by a circle, such that the area inside
the circle corresponds to x = 1, while the area outside the circle corresponds to x = 0.
This is illustrated in part (c). An expression involving one or more variables is depicted by
shading the area where the value of the expression is equal to 1. Part (d) indicates how the
complement of x is represented.

To represent two variables, x and y, we draw two overlapping circles. Then the area
where the circles overlap represents the case where x = y = 1, namely, the AND of x and
¥, as shown in part (e). Since this common area consists of the intersecting portions of x
and y, the AND operation is often referred to formally as the intersection of x and y. Part
(f) illustrates the OR operation, where x + y represents the total area within both circles,
namely, where at least one of x or y is equal to 1. Since this combines the areas in the
circles, the OR operation is formally often called the union of x and y.

Part (g) depicts the product term x -y, which is represented by the intersection of the
area for x with that for y. Part (h) gives a three-variable example; the expression x - y + z
is the union of the area for z with that of the intersection of x and y.

To see how we can use Venn diagrams to verify the equivalence of two expressions,
let us demonstrate the validity of the distributive property, 124, in section 2.5. Figure 2.13
gives the construction of the left and right sides of the identity that defines the property

x-(y+z2)=x-y+x-2

35

36

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

(a) Constant 1

=1

(b) Constant 0

(c) Variable x

=1

(d) x

€ x-y

() x+y

@ x-y

(h) x - y+:z

Figure 2.12 The Venn diagram representation.

Part (a) shows the area where x = 1. Part () indicates the area for y 4 z. Part (c) gives the
diagram for x - (y + z), the intersection of shaded areas in parts (a) and (b). The right-hand
side is constructed in parts (d), (e), and (f). Parts (d) and (e) describe the terms x - y and
x - z, respectively. The union of the shaded areas in these two diagrams then corresponds
to the expression x - y + x - z, as seen in part (f). Since the shaded areas in parts (c¢) and (f)

are identical, it follows that the distributive property is valid.

As another example, consider the identity

X-y+x-z+y-z=x-y+x-z

2.5 BOOLEAN ALGEBRA

(@) x d) x-y
(b) y+:z €e) x-z
©x-(y+2) () x-y+x-z

Figure 2.13 Verification of the distributive property x - (y +2) = x-y +x - z.

which is illustrated in Figure 2.14. Notice that this identity states that the term y - z is fully
covered by the terms x - y and X - z; therefore, this term can be omitted.

The reader should use the Venn diagram to prove some other identities. Itis particularly
instructive to prove the validity of DeMorgan’s theorem in this way.

2.5.2 NOTATION AND TERMINOLOGY

Boolean algebra is based on the AND and OR operations. We have adopted the symbols
- and + to denote these operations. These are also the standard symbols for the familiar
arithmetic multiplication and addition operations. Considerable similarity exists between
the Boolean operations and the arithmetic operations, which is the main reason why the
same symbols are used. In fact, when single digits are involved there is only one significant
difference; the result of 1 + 1 is equal to 2 in ordinary arithmetic, whereas it is equal to 1
in Boolean algebra as defined by theorem 7b in section 2.5.

When dealing with digital circuits, most of the time the 4 symbol obviously represents
the OR operation. However, when the task involves the design of logic circuits that perform

37

38

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

=
<
+
foN) = =1 =
N w N <
+
<
N

Figure 2.14 Verificationof x .y +x-z4+y-z=x-y+%-z.

arithmetic operations, some confusion may develop about the use of the + symbol. To avoid
such confusion, an alternative set of symbols exists for the AND and OR operations. It is
quite common to use the A symbol to denote the AND operation, and the v symbol for the
OR operation. Thus, instead of x; - x,, we can write x; A x,, and instead of x; + x;, we can
write x; V Xx,.

Because of the similarity with the arithmetic addition and multiplication operations,
the OR and AND operations are often called the logical sum and product operations. Thus
X1 + x; is the logical sum of x; and x,, and x| - x, is the logical product of x; and x,. Instead
of saying “logical product” and “logical sum,” it is customary to say simply “product” and

2.6 SYNTHESIS USING AND, OR, aND NOT GATES

“sum.” Thus we say that the expression
X1 X2 X3+ X1 X4+ X2 X3 X4
is a sum of three product terms, whereas the expression
(1 +x3) - (01 +X3) - (X2 +x3 +x4)

is a product of three sum terms.

2.5.3 PRECEDENCE OF OPERATIONS

Using the three basic operations—AND, OR, and NOT—it is possible to construct an infinite
number of logic expressions. Parentheses can be used to indicate the order in which the
operations should be performed. However, to avoid an excessive use of parentheses, another
convention defines the precedence of the basic operations. It states that in the absence of
parentheses, operations in a logic expression must be performed in the order: NOT, AND,
and then OR. Thus in the expression

X1 X2+ X1 - X2

it is first necessary to generate the complements of x; and x,. Then the product terms x; - x,
and X| - X, are formed, followed by the sum of the two product terms. Observe that in the
absence of this convention, we would have to use parentheses to achieve the same effect as
follows:

(x1 - x2) + ((x1) - (2)

Finally, to simplify the appearance of logic expressions, it is customary to omit the -
operator when there is no ambiguity. Therefore, the preceding expression can be written as

X1X2 +)_Cl)_62

We will use this style throughout the book.

39

2.6 SyNTHESIS USING AND, OR, AND NOT GATES

Armed with some basic ideas, we can now try to implement arbitrary functions using the
AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,
x1 and x,. Assume that x; and x; represent the states of two switches, either of which may
be open (0) or closed (1). The function of the circuit is to continuously monitor the state
of the switches and to produce an output logic value 1 whenever the switches (x;, x,) are
in states (0, 0), (0, 1), or (1, 1). If the state of the switches is (1, 0), the output should be
0. Another way of stating the required functional behavior of this circuit is that the output
must be equal to 0 if the switch x; is closed and x; is open; otherwise, the output must be
1. We can express the required behavior using a truth table, as shown in Figure 2.15.

A possible procedure for designing a logic circuit that implements the truth table is to
create a product term that has a value of 1 for each valuation for which the output function
f has to be 1. Then we can take a logical sum of these product terms to realize f. Let us

40

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

X1 X2 || f(X1, X2)

= oo
R OoOr o
O R -

Figure 2.15 A function to be synthesized.

begin with the fourth row of the truth table, which corresponds to x; = x, = 1. The product
term that is equal to 1 for this valuation is x; - x,, which is just the AND of x; and x,. Next
consider the first row of the table, for which x; = x, = 0. For this valuation the value 1 is
produced by the product term x| - x,. Similarly, the second row leads to the term x| - xp.
Thus f may be realized as

S (x1,x2) = x1x0 + X1 X0 + X1 X2

The logic network that corresponds to this expression is shown in Figure 2.16a.

Although this network implements f correctly, it is not the simplest such network. To
find a simpler network, we can manipulate the obtained expression using the theorems and
properties from section 2.5. According to theorem 7b, we can replicate any term in a logical

X

X

Y

00 %
&

(a) Canonical sum-of-products

D

(b) Minimal-cost realization

Figure 2.16 Two implementations of the function in Figure 2.15.

2.6 SYNTHESIS USING AND, OR, aND NOT GATES

sum expression. Replicating the third product term, the above expression becomes
S &1, x2) = xixp + XX + X1x2 + X1x2

Using the commutative property 10b to interchange the second and third product terms
gives

S, x2) = xix2 + X100 + X1 X2 + X1
Now the distributive property 12a allows us to write
S, x2) = (1 +X1)x2 + X1 (62 + x2)
Applying theorem 8b we get
S, x)=1-x+x -1
Finally, theorem 6a leads to
f&xi,x2) =x+ X

The network described by this expression is given in Figure 2.16b. Obviously, the cost of
this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables,
and it is formed such that if the input variable x; is equal to 1 in the given row, then x; is
entered in the term; if x; = 0, then X; is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is called synthesis. Thus we can
say that we “synthesized” the networks in Figure 2.16 from the truth table in Figure 2.15.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.

2.6.1 Sum-or-Propucts AND PRODUCT-OF-SUMS FORMS

Having introduced the synthesis process by means of a very simple example, we will now
present it in more formal terms using the terminology that is encountered in the technical
literature. We will also show how the principle of duality, which was introduced in section
2.5, applies broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

42

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

Minterms

For a function of n variables, a product term in which each of the n variables appears
once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
including x; if x; = 1 and by including ¥; if x; = 0.

To illustrate this concept, consider the truth table in Figure 2.17. We have numbered
the rows of the table from O to 7, so that we can refer to them easily. From the discussion
of the binary number representation in section 1.6, we can observe that the row numbers
chosen are just the numbers represented by the bit patterns of variables xi, x,, and x3. The
figure shows all minterms for the three-variable table. For example, in the first row the
variables have the values x; = x, = x3 = 0, which leads to the minterm X;X,X3. In the
second row x; = x, = 0 and x3 = 1, which gives the minterm Xx;X,x3, and so on. To be
able to refer to the individual minterms easily, it is convenient to identify each minterm by
an index that corresponds to the row numbers shown in the figure. We will use the notation
m; to denote the minterm for row number i. Thus my = X1X,X3, m; = X1X,X3, and so on.

Sum-of-Products Form

A function f can be represented by an expression that is a sum of minterms, where each
minterm is ANDed with the value of f for the corresponding valuation of input variables.
For example, the two-variable minterms are my = XX», m; = XX, My = XXz, and
m3 = x1x,. The function in Figure 2.15 can be represented as

f=my-14+m-1+m-04+ms-1
=my+m +m3
= XX + X102 + XX
which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for which f = 1 appear in the resulting expression.

Any function f* can be represented by a sum of minterms that correspond to the rows
in the truth table for which f = 1. The resulting implementation is functionally correct and

Row
number | X1 X2 X3 Minterm Maxterm
0 0 0 O | mp=X1XoX3 | Mg=X1 + X2+ X3
1 0 0 1 m; = X1X2X3 | M1 = X1 + X2 + X3
2 0 1 0 my = X1XoX3 | M2 = X1 + X2 + X3
3 0 1 1 m3 = X1XoX3 | M3 = X1 + X2 + X3
4 1 0 0 Mg = X1XoX3 | Mg = X1 + X2 + X3
5 1 0 1 M5 = X1XoX3 | Mg = X1 + X2 + X3
6 1 1 0 Mg = X1X2X3 | Mg = X1 + X2 + X3
7 1 1 1 m7 = X1XoX3 | M7 =X1 + X2 + X3

Figure 2.17 Three-variable minterms and maxterms.

2.6 SYNTHESIS USING AND, OR, aND NOT GATES

unique, but it is not necessarily the lowest-cost implementation of f. A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be of the sum-of-
products (SOP) form. If each product term is a minterm, then the expression is called a can-
onical sum-of-products for the function . As we have seen in the example of Figure 2.16,
the first step in the synthesis process is to derive a canonical sum-of-products expression
for the given function. Then we can manipulate this expression, using the theorems and
properties of section 2.5, with the goal of finding a functionally equivalent sum-of-products
expression that has a lower cost.

As another example, consider the three-variable function f (x1, x;, x3), specified by the
truth table in Figure 2.18. To synthesize this function, we have to include the minterms m;,
my, ms, and mg. Copying these minterms from Figure 2.17 leads to the following canonical
sum-of-products expression for f

£, X2, x3) = X1XoX3 + X1 X0X3 + X1 X2X3 + X1X2X3
This expression can be manipulated as follows

=& +x)xx3 + x1(3% + x2)X;3
=1-Xx34+x1-1-X3

= XpX3 + X1 X3

This is the minimum-cost sum-of-products expression for f. It describes the circuit shown
in Figure 2.19a. A good indication of the cost of a logic circuit is the total number of gates
plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2.19a is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.
Minterms, with their row-number subscripts, can also be used to specify a given func-
tion in a more concise form. For example, the function in Figure 2.18 can be specified

Row
number | X3 X2 X3 || f(X1, X2, X3)
0 0O 0 O 0
1 0 0 1 1
2 0o 1 O 0
3 0o 1 1 0
4 1 0 O 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.18 A three-variable function.

43

44

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

x24>o_
Do

(a) A minimal sum-of-products realization
xl)
X3

X

X3

X

D

(b) A minimal product-of-sums realization

Figure 2.19 Two readlizations of the function in Figure 2.18.

as
fG1x,63) = Y (my, ma, ms, me)

or even more simply as

[, x0,x5) =) m(1,4,5,6)

The Y sign denotes the logical sum operation. This shorthand notation is often used in
practice.

Maxterms

The principle of duality suggests that if it is possible to synthesize a function f by
considering the rows in the truth table for which f = 1, then it should also be possible to
synthesize f by considering the rows for which f = 0. This alternative approach uses the
complements of minterms, which are called maxterms. All possible maxterms for three-
variable functions are listed in Figure 2.17. We will refer to a maxterm M; by the same row
number as its corresponding minterm m; as shown in the figure.

Product-of-Sums Form

If a given function f is specified by a truth table, then its complement f can be rep-
resented by a sum of minterms for which f = 1, which are the rows where f = 0. For

2.6 SYNTHESIS USING AND, OR, aND NOT GATES

example, for the function in Figure 2.15

fa,x) =m
= xl)_Cz
If we complement this expression using DeMorgan’s theorem, the result is
f=f=xx
=X +x

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the function f. The key point here is that

f=m=M

where M, is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.18. The complement of
this function can be represented as

f (1, x2, x3) = mg + my + m3 + my

= X1X2X3 + X1X2X3 + X1X2X3 + X1 X2X3

Then f can be expressed as

f=mo+my+mz~+m
= Tii - Ty - T3 - 7
=My My -M;-M;
= (x1 +x2 +x3)(x1 + X2 +x3)(x1 + X2 + X3) (%1 + X2 + X3)

This expression represents f* as a product of maxterms.

Alogic expression consisting of sum (OR) terms that are the factors of a logical product
(AND) is said to be of the product-of-sums (POS) form. If each sum term is a maxterm, then
the expression is called a canonical product-of-sums for the given function. Any function
f can be synthesized by finding its canonical product-of-sums. This involves taking the
maxterm for each row in the truth table for which f = 0 and forming a product of these
maxterms.

Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
10b and the associative property 115 from section 2.5, this expression can be written as

= (1 +x3) +2x2) ((x1 +x3) +X2) (1 + (62 +X3)) (X1 + (X2 +X3))
Then, using the combining property 14b, the expression reduces to
f= 01+ x3)&x +X3)

The corresponding network is given in Figure 2.19b. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2.19a,
the reader should not assume that the cost of a network derived in the sum-of-products form

45

46

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.
Using the shorthand notation, an alternative way of specifying our sample function is

J(xa,x2, x3) = TH(Mo, M3, M3, M7)
or more simply
J @, xo,x3) =TIM(0,2,3,7)

The IT sign denotes the logical product operation.

The preceding discussion has shown how logic functions can be realized in the form
of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with circuits of a different structure, which usually implies a
difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss the most important techniques for finding minimum-cost
implementations in Chapter 4.

Example 2.3 Consider the function
fGnx, %) =) m(2,3,4,6,7)
The canonical SOP expression for the function is derived using minterms
f=my+ms+my+me+m;
= X1X0X3 + X1 X2x3 + X1X2X3 + X1X2X3 + X1 X0%3
This expression can be simplified using the identities in section 2.5 as follows
f =X1x2(x3 + x3) + X1 (X2 + x2)X3 + x102(X3 + x3)
=)_61)62 + X])_C3 =+ X1x2
= (X] +x1)x2 +x1X3
= X2 + X1 X3
Example 2.4 Consider again the function in Example 2.3. Instead of using the minterms, we can specify

this function as a product of maxterms for which f = 0, namely
S x1,x,x3) =TIM (0, 1,5)
Then, the canonical POS expression is derived as

f=My-M;-Ms
= (X1 +x2 +x3)(x1 +x2 +X3)(X1 + X2 +X3)

2.7 NAND anp NOR LoGic NETWORKS

A simplified POS expression can be derived as

S = (1 +x2) +x3) (o1 +x2) +X3)(x1 + (02 +X3)) (X1 + (2 + X3))
= ((x1 + x2) +x3%3) (X1 X1 + (x2 +X3))
= (X1 + x2)(x2 + X3)
Note that by using the distributive property 12b, this expression leads to
f=x2+x1x;

which is the same as the expression derived in Example 2.3.

47

Suppose that a four-variable function is defined by
f (1, x2, X3, X4) = Zm(3, 7,9,12,13, 14, 15)
The canonical SOP expression for this function is
[= X1Xox3x4 + X1X0X3X4 + X1X2X3X4 + X1X2X3X4 + X1X2X3X4 + X1X2X3X4 + X1X2X3X4
A simpler SOP expression can be obtained as follows

[=X100 +x2)x3x4 + x1 (X2 + X2)X3x4 + X1 X0X3 (X4 + X4) + X1 2%3 (X4 + X4)
= X1X3X4 + X1X3X4 + X1X0X3 + X1X0X3
= X1X3X4 + X1X3X4 + X120 (X3 + x3)

= X1X3X4 + X1X3X4 + X1X2

Example 2.5

2.7 NAND anp NOR LoGic NETWORKS

We have discussed the use of AND, OR, and NOT gates in the synthesis of logic circuits.
There are other basic logic functions that are also used for this purpose. Particularly use-
ful are the NAND and NOR functions which are obtained by complementing the output
generated by AND and OR operations, respectively. These functions are attractive because
they are implemented with simpler electronic circuits than the AND and OR functions, as
we will see in Chapter 3. Figure 2.20 gives the graphical symbols for the NAND and NOR
gates. A bubble is placed on the output side of the AND and OR gate symbols to represent
the complemented output signal.

If NAND and NOR gates are realized with simpler circuits than AND and OR gates,
then we should ask whether these gates can be used directly in the synthesis of logic circuits.
In section 2.5 we introduced DeMorgan’s theorem. Its logic gate interpretation is shown
in Figure 2.21. Identity 15a is interpreted in part (a) of the figure. It specifies that a
NAND of variables x; and x; is equivalent to first complementing each of the variables
and then ORing them. Notice on the far-right side that we have indicated the NOT gates

48

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

xl — _
x1~x2 i x1x2
X2 — °

X - -
% xl+x2 : x1+x2+

(b) NOR gates

Figure 2.20 NAND and NOR gates.

T = ﬁjj:} &

(a) Xlxz =)_Cl +)_C2

5 >0
D G Do
2
() x;+Xx, = XX,

Figure 2.21 DeMorgan’s theorem in terms of logic gates.

+x

x; —d
X, —O

2.7 NAND anp NOR LoGic NETWORKS

simply as bubbles, which denote inversion of the logic value at that point. The other half of
DeMorgan’s theorem, identity 15b, appears in part (b) of the figure. It states that the NOR
function is equivalent to first inverting the input variables and then ANDing them.

In section 2.6 we explained how any logic function can be implemented either in sum-
of-products or product-of-sums form, which leads to logic networks that have either an
AND-OR or an OR-AND structure, respectively. We will now show that such networks
can be implemented using only NAND gates or only NOR gates.

Consider the network in Figure 2.22 as a representative of general AND-OR networks.
This network can be transformed into a network of NAND gates as shown in the figure.
First, each connection between the AND gate and an OR gate is replaced by a connection
that includes two inversions of the signal: one inversion at the output of the AND gate and
the other at the input of the OR gate. Such double inversion has no effect on the behavior of
the network, as stated formally in theorem 9 in section 2.5. According to Figure 2.21a, the
OR gate with inversions at its inputs is equivalent to a NAND gate. Thus we can redraw
the network using only NAND gates, as shown in Figure 2.22. This example shows that
any AND-OR network can be implemented as a NAND-NAND network having the same
topology.

Figure 2.23 gives a similar construction for a product-of-sums network, which can be
transformed into a circuit with only NOR gates. The procedure is exactly the same as the
one described for Figure 2.22 except that now the identity in Figure 2.215b is applied. The
conclusion is that any OR-AND network can be implemented as a NOR-NOR network
having the same topology.

X — X1
Xy —— x,
¥5— <::> X3 —
xy — | Xy
X5 I Xs I

BT

X4

xg —I

i
o
A

Figure 2.22 Using NAND gates to implement a sum-of-products.

49

50

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

X1

X

—) >
*3 } <:> 3
=2 =2

X1
X2
X3
X4

Xs

Figure 2.23 Using NOR gates to implement a product-of-sums.

Example 2.6

Let us implement the function

fOnxn.x) =) m(2.3,4,6,7)

using NOR gates only. In Example 2.4 we showed that the function can be represented by
the POS expression

f= 1 +x)x +X3)

An OR-AND circuit that corresponds to this expression is shown in Figure 2.24a. Using
the same structure of the circuit, a NOR-gate version is given in Figure 2.24b. Note that x3
is inverted by a NOR gate that has its inputs tied together.

Example 2.7

Let us now implement the function

[, x,03) =) m(2,3,4,6,7)
using NAND gates only. In Example 2.3 we derived the SOP expression
f=x+xx3

which is realized using the circuit in Figure 2.25a. We can again use the same structure
to obtain a circuit with NAND gates, but with one difference. The signal x, passes only
through an OR gate, instead of passing through an AND gate and an OR gate. If we simply
replace the OR gate with a NAND gate, this signal would be inverted which would result
in a wrong output value. Since x, must either not be inverted, or it can be inverted twice,

2.7 NAND anp NOR LoGic NETWORKS

X
: D
X3

(a) POS implementation

Xy
X, f
X3

(b) NOR implementation

Figure 2.24 NOR-gate realization of the function in Example 2.4.

L D}D
5 — >0

(a) SOP implementation

X2

| SIDSN
. {3)_;3]

(b) NAND implementation

} f

Figure 2.25 NAND-gate realization of the function in Example 2.3.

51

52

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

we can pass it through two NAND gates as depicted in Figure 2.25b. Observe that for this
circuit the output fis

f =)_Cz X 1)_63
Applying DeMorgan’s theorem, this expression becomes

f=x+xx;

2.8 DEsiGN EXAMPLES

Logic circuits provide a solution to a problem. They implement functions that are needed to
carry out specific tasks. Within the framework of a computer, logic circuits provide complete
capability for execution of programs and processing of data. Such circuits are complex and
difficult to design. But regardless of the complexity of a given circuit, a designer of logic
circuits is always confronted with the same basic issues. First, it is necessary to specify the
desired behavior of the circuit. Second, the circuit has to be synthesized and implemented.
Finally, the implemented circuit has to be tested to verify that it meets the specifications.
The desired behavior is often initially described in words, which then must be turned into
a formal specification. In this section we give two simple examples of design.

2.8.1 THREE-WAY LiGHT CONTROL

Assume that a large room has three doors and that a switch near each door controls a light
in the room. It has to be possible to turn the light on or off by changing the state of any one
of the switches.

As a first step, let us turn this word statement into a formal specification using a truth
table. Let x;, x», and x3 be the input variables that denote the state of each switch. Assume
that the light is off if all switches are open. Closing any one of the switches will turn the
light on. Then turning on a second switch will have to turn off the light. Thus the light
will be on if exactly one switch is closed, and it will be off if two (or no) switches are
closed. If the light is off when two switches are closed, then it must be possible to turn
it on by closing the third switch. If f'(x;, x2, x3) represents the state of the light, then the
required functional behavior can be specified as shown in the truth table in Figure 2.26.
The canonical sum-of-products expression for the specified function is

f=mi+my+ms+my

= X1X2X3 + X1x2X3 + X1 X2X3 + X1x0x3

This expression cannot be simplified into a lower-cost sum-of-products expression. The
resulting circuit is shown in Figure 2.27a.

2.8 DESIGN EXAMPLES

x
i
X
)
x
9
—

PR RPRPOOOOoO
PP OOREFLR OO
PORrROROPRO
RPOORrRORrREFLRO

Figure 2.26 Truth table for the three-way light
control.

An alternative realization for this function is in the product-of-sums form. The canon-
ical expression of this type is

f=My-Ms-Ms - Mg
= (X1 +x2 +x3) (1 + X2 +x3) (X1 +x2 +X3)(X1 + X2 + x3)

The resulting circuit is depicted in Figure 2.27b. It has the same cost as the circuit in part
(a) of the figure.

When the designed circuit is implemented, it can be tested by applying the various
input valuations to the circuit and checking whether the output corresponds to the values
specified in the truth table. A straightforward approach is to check that the correct output
is produced for all eight possible input valuations.

2.8.2 MULTIPLEXER CIRCUIT

In computer systems it is often necessary to choose data from exactly one of a number
of possible sources. Suppose that there are two sources of data, provided as input signals
x1 and x,. The values of these signals change in time, perhaps at regular intervals. Thus
sequences of Os and 1s are applied on each of the inputs x; and x,. We want to design a
circuit that produces an output that has the same value as either x; or x;, dependent on the
value of a selection control signal s. Therefore, the circuit should have three inputs: x;,
Xy, and s. Assume that the output of the circuit will be the same as the value of input x; if
s = 0, and it will be the same as x, if s = 1.

Based on these requirements, we can specify the desired circuit in the form of a truth
table given in Figure 2.28a. From the truth table, we derive the canonical sum of products

f(s,x1,X2) = Sx1X2 + Sx1x2 + 5X1X2 + X102

53

54 CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

—aAA [

2/ i

X3

sjelele

(a) Sum-of-products realization

X3

x, —I !

1YYV

J U

Ué)

(b) Product-of-sums realization

Figure 2.27 Implementation of the function in Figure 2.26.

Using the distributive property, this expression can be written as
[=5x100+x) + 5@ +x1)x
Applying theorem 8b yields
f=5sx1-1+s-1-x
Finally, theorem 6a gives

f =35x1 +sx

2.8 DESIGN EXAMPLES

S X1 X2 f (s, X1, X2)
000 0
001 0
010 1
011 1
100 0
101 1
110 0
111 1

(a) Truth table

S
f Xy
f
s X2
X2
(b) Circuit (c) Graphical symbol
s || f(s X1, X2)
0 X1
1 X2
(d) More compact truth-table representation
Figure 2.28 Implementation of a multiplexer.

A circuit that implements this function is shown in Figure 2.28b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
or more selection control inputs, is called a multiplexer. We say that a multiplexer circuit
“multiplexes” input signals onto a single output.

55

56

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

In this example we derived a multiplexer with two data inputs, which is referred to
as a “2-to-1 multiplexer.” A commonly used graphical symbol for the 2-to-1 multiplexer
is shown in Figure 2.28c. The same idea can be extended to larger circuits. A 4-to-1
multiplexer has four data inputs and one output. In this case two selection control inputs
are needed to choose one of the four data inputs that is transmitted as the output signal. An
8-to-1 multiplexer needs eight data inputs and three selection control inputs, and so on.

Note that the statement “f = x; if s = 0, and f = x, if s = 1” can be presented in a
more compact form of a truth table, as indicated in Figure 2.28d. In later chapters we will
have occasion to use such representation.

We showed how a multiplexer can be built using AND, OR, and NOT gates. The same
circuit structure can be used to implement the multiplexer using NAND gates, as explained
in section 2.7. In Chapter 3 we will show other possibilities for constructing multiplexers.
In Chapter 6 we will discuss the use of multiplexers in considerable detail.

Designers of logic circuits rely heavily on CAD tools. We want to encourage the reader
to become familiar with the CAD tool support provided with this book as soon as possible.
We have reached a point where an introduction to these tools is useful. The next section
presents some basic concepts that are needed to use these tools. We will also introduce, in
section 2.10, a special language for describing logic circuits, called VHDL. This language
is used to describe the circuits as an input to the CAD tools, which then proceed to derive
a suitable implementation.

2.9 InTRODUCTION TO CAD ToOLS

The preceding sections introduced a basic approach for synthesis of logic circuits. A de-
signer could use this approach manually for small circuits. However, logic circuits found
in complex systems, such as today’s computers, cannot be designed manually—they are
designed using sophisticated CAD tools that automatically implement the synthesis tech-
niques.

To design alogic circuit, a number of CAD tools are needed. They are usually packaged
together into a CAD system, which typically includes tools for the following tasks: design
entry, synthesis and optimization, simulation, and physical design. We will introduce some
of these tools in this section and will provide additional discussion in later chapters.

2.9.1 DESIGN ENTRY

The starting point in the process of designing a logic circuit is the conception of what the
circuit is supposed to do and the formulation of its general structure. This step is done
manually by the designer because it requires design experience and intuition. The rest
of the design process is done with the aid of CAD tools. The first stage of this process
involves entering into the CAD system a description of the circuit being designed. This
stage is called design entry. We will describe two design entry methods: using schematic
capture and writing source code in a hardware description language.

2.9 INTRODUCTION TO CAD ToOLS

Schematic Capture

A logic circuit can be defined by drawing logic gates and interconnecting them with
wires. A CAD tool for entering a designed circuit in this way is called a schematic capture
tool. The word schematic refers to a diagram of a circuit in which circuit elements, such
as logic gates, are depicted as graphical symbols and connections between circuit elements
are drawn as lines.

A schematic capture tool uses the graphics capabilities of a computer and a computer
mouse to allow the user to draw a schematic diagram. To facilitate inclusion of gates
in the schematic, the tool provides a collection of graphical symbols that represent gates
of various types with different numbers of inputs. This collection of symbols is called a
library. The gates in the library can be imported into the user’s schematic, and the tool
provides a graphical way of interconnecting the gates to create a logic network.

Any subcircuits that have been previously created can be represented as graphical
symbols and included in the schematic. In practice it is common for a CAD system user to
create a circuit that includes within it other smaller circuits. This methodology is known
as hierarchical design and provides a good way of dealing with the complexities of large
circuits.

The schematic-capture facility is described in detail in Appendix B. It is simple to use,
but becomes awkward when large circuits are involved. A better method for dealing with
large circuits is to write source code using a hardware description language to represent the
circuit.

Hardware Description Languages

A hardware description language (HDL) is similar to a typical computer programming
language except that an HDL is used to describe hardware rather than a program to be
executed on a computer. Many commercial HDLs are available. Some are proprietary,
meaning that they are provided by a particular company and can be used to implement cir-
cuits only in the technology provided by that company. We will not discuss the proprietary
HDLs in this book. Instead, we will focus on a language that is supported by virtually
all vendors that provide digital hardware technology and is officially endorsed as an Insti-
tute of Electrical and Electronics Engineers (IEEE) standard. The IEEE is a worldwide
organization that promotes technical activities to the benefit of society in general. One of
its activities involves the development of standards that define how certain technological
concepts can be used in a way that is suitable for a large body of users.

Two HDLs are IEEE standards: VHDL (Very High Speed Integrated Circuit Hardware
Description Language) and Verilog HDL. Both languages are in widespread use in the
industry. We use VHDL in this book, but a Verilog version of the book is also available
from the same publisher [4]. Although the two languages differ in many ways, the choice
of using one or the other when studying logic circuits is not particularly important, because
both offer similar features. Concepts illustrated in this book using VHDL can be directly
applied when using Verilog.

In comparison to performing schematic capture, using VHDL offers a number of advan-
tages. Because it is supported by most organizations that offer digital hardware technology,
VHDL provides design portability. A circuit specified in VHDL can be implemented in dif-
ferent types of chips and with CAD tools provided by different companies, without having

57

58

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

to change the VHDL specification. Design portability is an important advantage because
digital circuit technology changes rapidly. By using a standard language, the designer can
focus on the functionality of the desired circuit without being overly concerned about the
details of the technology that will eventually be used for implementation.

Design entry of a logic circuit is done by writing VHDL code. Signals in the circuit
can be represented as variables in the source code, and logic functions are expressed by
assigning values to these variables. VHDL source code is plain text, which makes it easy
for the designer to include within the code documentation that explains how the circuit
works. This feature, coupled with the fact that VHDL is widely used, encourages sharing
and reuse of VHDL-described circuits. This allows faster development of new products in
cases where existing VHDL code can be adapted for use in the design of new circuits.

Similar to the way in which large circuits are handled in schematic capture, VHDL
code can be written in a modular way that facilitates hierarchical design. Both small and
large logic circuit designs can be efficiently represented in VHDL code. VHDL has been
used to define circuits such as microprocessors with millions of transistors.

VHDL design entry can be combined with other methods. For example, a schematic-
capture tool can be used in which a subcircuit in the schematic is described using VHDL.
We will introduce VHDL in section 2.10.

2.9.2 SYNTHESIS

Synthesis is the process of generating a logic circuit from an initial specification that may
be given in the form of a schematic diagram or code written in a hardware description
language. Synthesis CAD tools generate efficient implementations of circuits from such
specifications.

The process of translating, or compiling, VHDL code into a network of logic gates is
part of synthesis. The output is a set of logic expressions that describe the logic functions
needed to realize the circuit.

Regardless of what type of design entry is used, the initial logic expressions produced by
the synthesis tools are not likely to be in an optimal form because they reflect the designer’s
input to the CAD tools. It is impossible for a designer to manually produce optimal results
for large circuits. So, one of the important tasks of the synthesis tools is to manipulate the
user’s design to automatically generate an equivalent, but better circuit.

The measure of what makes one circuit better than another depends on the particular
needs of a design project and the technology chosen for implementation. In section 2.6
we suggested that a good circuit might be one that has the lowest cost. There are other
possible optimization goals, which are motivated by the type of hardware technology used
for implementation of the circuit. We will discuss implementation technologies in Chapter
3 and return to the issue of optimization goals in Chapter 4.

The perfomance of a synthesized circuit can be assessed by physically constructing the
circuit and testing it. But, its behavior can also be evaluated by means of simulation.

2.9 INTRODUCTION TO CAD ToOLS

2.9.3 FUNCTIONAL SIMULATION

A circuit represented in the form of logic expressions can be simulated to verify that it
will function as expected. The tool that performs this task is called a functional simulator.
It uses the logic expressions (often referred to as equations) generated during synthesis,
and assumes that these expressions will be implemented with perfect gates through which
signals propagate instantaneously. The simulator requires the user to specify valuations
of the circuit’s inputs that should be applied during simulation. For each valuation, the
simulator evaluates the outputs produced by the expressions. The results of simulation are
usually provided in the form of a timing diagram which the user can examine to verify
that the circuit operates as required. The functional simulation is discussed in detail in
Appendix B.

2.9.4 PuysicAL DESIGN

After logic synthesis the next step in the design flow is to determine exactly how to imple-
ment the circuit on a given chip. This step is often called physical design. As we will see
in Chapter 3, there are several different technologies that may be used to implement logic
circuits. The physical design tools map a circuit specified in the form of logic expressions
into a realization that makes use of the resources available on the target chip. They deter-
mine the placement of specific logic elements, which are not necessarily simple gates of
the type we have encountered so far. They also determine the wiring connections that have
to be made between these elements to implement the desired circuit.

2.9.5 TiMING SIMULATION

Logic gates and other logic elements are implemented with electronic circuits, as we will
discuss in Chapter 3. An electronic circuit cannot perform its function instantaneously.
When the values of inputs to the circuit change, it takes a certain amount of time before a
corresponding change occurs at the output. This is called a propagation delay of the circuit.
The propagation delay consists of two kinds of delays. Each logic element needs some time
to generate a valid output signal whenever there are changes in the values of its inputs. In
addition to this delay, there is a delay caused by signals that must propagate through wires
that connect various logic elements. The combined effect is that real circuits exhibit delays,
which has a significant impact on their speed of operation.

A timing simulator evaluates the expected delays of a designed logic circuit. Its results
can be used to determine if the generated circuit meets the timing requirements of the
specification for the design. If the requirements are not met, the designer can ask the
physical design tools to try again by indicating specific timing constraints that have to be
met. If this does not succeed, then the designer has to try different optimizations in the
synthesis step, or else improve the initial design that is presented to the synthesis tools.

59

60

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

2.9.6 CHiP CONFIGURATION

Having ascertained that the designed circuit meets all requirements of the specification,
the circuit is implemented on an actual chip. This step is called chip configuration or
programming.

The CAD tools discussed in this section are the essential parts of a CAD system. The
complete design flow that we discussed is illustrated in Figure 2.29. This has been just a
brief introductory discussion. A full presentation of the CAD tools is given in Chapter 12.

At this point the reader should have some appreciation for what is involved when using
CAD tools. However, the tools can be fully appreciated only when they are used firsthand.
In Appendices B to D, we provide step-by-step tutorials that illustrate how to use the Quartus
II CAD system, which is included with this book. We strongly encourage the reader to work
through the hands-on material in these appendices. Because the tutorials use VHDL for
design entry, we provide an introduction to VHDL in the following section.

2.10 InTRODUCTION TO VHDL

In the 1980s rapid advances in integrated circuit technology lead to efforts to develop
standard design practices for digital circuits. VHDL was developed as a part of that effort.
VHDL has become the industry standard language for describing digital circuits, largely
because it is an official IEEE standard. The original standard for VHDL was adopted in
1987 and called IEEE 1076. A revised standard was adopted in 1993 and called IEEE 1164.
The standard was subsequently updated in 2000 and 2002.

VHDL was originally intended to serve two main purposes. First, it was used as a
documentation language for describing the structure of complex digital circuits. As an
official IEEE standard, VHDL provided a common way of documenting circuits designed
by numerous designers. Second, VHDL provided features for modeling the behavior of a
digital circuit, which allowed its use as input to software programs that were then used to
simulate the circuit’s operation.

In recent years, in addition to its use for documentation and simulation, VHDL has
also become popular for use in design entry in CAD systems. The CAD tools are used to
synthesize the VHDL code into a hardware implementation of the described circuit. In this
book our main use of VHDL will be for synthesis.

VHDL is a complex, sophisticated language. Learning all of its features is a daunting
task. However, for use in synthesis only a subset of these features is important. To simplify
the presentation, we will focus the discussion on the features of VHDL that are actually
used in the examples in the book. The material presented should be sufficient to allow the
reader to design a wide range of circuits. The reader who wishes to learn the complete
VHDL language can refer to one of the specialized texts [5—11].

VHDL is introduced in several stages throughout the book. Our general approach will
be to introduce particular features only when they are relevant to the design topics covered
in that part of the text. In Appendix A we provide a concise summary of the VHDL features
covered in the book. The reader will find it convenient to refer to that material from time to

2.10 INTRODUCTION TO VHDL

Design conception

\

DESIGN ENTRY

Synthesis

\

Functional simulation

l

No]
- thrrect?
Yes
/
Physical design
: A

Timing simulation

l

No

Timing requirements met?

Chip configuration

Figure 2.29 A typical CAD system.

61

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

time. In the remainder of this chapter, we discuss the most basic concepts needed to write
simple VHDL code.

2.10.1 REPRESENTATION OF DIGITAL SIGNALS IN VHDL

When using CAD tools to synthesize a logic circuit, the designer can provide the initial
description of the circuit in several different ways, as we explained in section 2.9.1. One
efficient way is to write this description in the form of VHDL source code. The VHDL
compiler translates this code into alogic circuit. Eachlogic signal in the circuitis represented
in VHDL code as a data object. Just as the variables declared in any high-level programming
language have associated types, such as integers or characters, data objects in VHDL can be
of various types. The original VHDL standard, IEEE 1076, includes a data type called BIT.
An object of this type is well suited for representing digital signals because BIT objects can
have only two values, 0 and 1. In this chapter all signals in our examples will be of type
BIT. Other data types are introduced in section 4.12 and are listed in Appendix A.

2.10.2 WRrITING SiIMPLE VHDL CoDE

We will use an example to illustrate how to write simple VHDL source code. Consider the
logic circuit in Figure 2.30. If we wish to write VHDL code to represent this circuit, the
first step is to declare the input and output signals. This is done using a construct called
an entity. An appropriate entity for this example appears in Figure 2.31. An entity must

X1

=D
v D
D~

L

X3

Figure 2.30 A simple logic function.

ENTITY examplel IS
PORT (x1,x2,x3 :IN BIT;
f : OUT BIT);
END examplel ;

Figure 2.31 VHDL entity declaration for the circuit in Figure 2.30.

2.10 INTRODUCTION TO VHDL

be assigned a name; we have chosen the name examplel for this first example. The input
and output signals for the entity are called its ports, and they are identified by the keyword
PORT. This name derives from the electrical jargon in which the word port refers to an
input or output connection to an electronic circuit. Each port has an associated mode that
specifies whether it is an input (IN) to the entity or an output (OUT) from the entity. Each
port represents a signal, hence it has an associated type. The entity examplel has four ports
in total. The first three, x;, x,, and x3, are input signals of type BIT. The port named fis an
output of type BIT.

In Figure 2.31 we have used simple signal names x/, x2, x3, and ffor the entity’s ports.
Similar to most computer programming languages, VHDL has rules that specify which
characters are allowed in signal names. A simple guideline is that signal names can include
any letter or number, as well as the underscore character ‘_’. There are two caveats: a
signal name must begin with a letter, and a signal name cannot be a VHDL keyword.

An entity specifies the input and output signals for a circuit, but it does not give any
details as to what the circuit represents. The circuit’s functionality must be specified with
a VHDL construct called an architecture. An architecture for our example appears in
Figure 2.32. It must be given a name, and we have chosen the name LogicFunc. Although
the name can be any text string, it is sensible to assign a name that is meaningful to the
designer. In this case we have chosen the name LogicFunc because the architecture specifies
the functionality of the design using a logic expression. VHDL has built-in support for the
following Boolean operators: AND, OR, NOT, NAND, NOR, XOR, and XNOR. (So far we
have introduced AND, OR, NOT, NAND, and NOR operators; the others will be presented
in Chapter 3.) Following the BEGIN keyword, our architecture specifies, using the VHDL
signal assignment operator <=, that output f should be assigned the result of the logic
expression on the right-hand side of the operator. Because VHDL does not assume any
precedence of logic operators, parentheses are used in the expression. One might expect
that an assignment statement such as

f <=x1 AND x2 OR NOT x2 AND x3
would have implied parentheses
f <= (x1 AND x2) OR ((NOT x2) AND x3)

But for VHDL code this assumption is not true. In fact, without the parentheses the VHDL
compiler would produce a compile-time error for this expression.

Complete VHDL code for our example is given in Figure 2.33. This example has
illustrated that a VHDL source code file has two main sections: an entity and an architecture.

ARCHITECTURE LogicFunc OF examplel IS
BEGIN

f <=(x1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Figure 2.32 VHDL architecture for the entity in Figure 2.31.

63

64

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

ENTITY examplel IS
PORT (x1,x2,x3 :IN BIT;
f : OUT BIT);
END examplel ;

ARCHITECTURE LogicFunc OF examplel IS
BEGIN

f <= (x1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc;

Figure 2.33 Complete VHDL code for the circuit in Figure 2.30.

ENTITY example2 IS
PORT (x1,x2,x3,x4 :IN BIT;
f,g : OUT BIT);
END example2 ;

ARCHITECTURE LogicFunc OF example2 IS
BEGIN

f <= (x1 AND x3) OR (x2 AND x4) ;

g <= (X1 OR NOT x3) AND (NOT x2 OR x4) ;
END LogicFunc;

Figure 2.34 VHDL code for a four-input function.

A simple analogy for what each section represents is that the entity is equivalent to a symbol
in a schematic diagram and the architecture specifies the logic circuitry inside the symbol.

A second example of VHDL code is given in Figure 2.34. This circuit has four input
signals, called x1, x2, x3, and x4, and two output signals, named fand g. A logic expression
is assigned to each output. A logic circuit produced by the VHDL compiler for this example
is shown in Figure 2.35.

The preceding two examples indicate that one way to assign a value to a signal in
VHDL code is by means of a logic expression. In VHDL terminology a logic expression
is called a simple assignment statement. We will see later that VHDL also supports several
other types of assignment statements and many other features that are useful for describing
circuits that are much more complex.

2.10.3 How ~or To WRITE VHDL CobE

When learning how to use VHDL or other hardware description languages, the tendency for
the novice is to write code that resembles a computer program, containing many variables
and loops. It is difficult to determine what logic circuit the CAD tools will produce when
synthesizing such code. This book contains more than 100 examples of complete VHDL

2.11 CoONCLUDING REMARKS

X

X3

P

X2

X4

D

Ny

Figure 2.35 Logic circuit for the code in Figure 2.34.

code that represent a wide range of logic circuits. In these examples the code is easily
related to the described logic circuit. The reader is advised to adopt the same style of code.
A good general guideline is to assume that if the designer cannot readily determine what
logic circuit is described by the VHDL code, then the CAD tools are not likely to synthesize
the circuit that the designer is trying to model.

Once complete VHDL code is written for a particular design, the reader is encouraged
to analyze the resulting circuit synthesized by the CAD tools. Much can be learned about
VHDL, logic circuits, and logic synthesis through this process.

65

2.11 CoNCLUDING REMARKS

In this chapter we introduced the concept of logic circuits. We showed that such circuits can
be implemented using logic gates and that they can be described using a mathematical model
called Boolean algebra. Because practical logic circuits are often large, it is important to
have good CAD tools to help the designer. This book is accompanied by the Quartus II
software, which is a CAD tool provided by Altera Corporation. We introduced a few basic
features of this tool and urge the reader to start using this software as soon as possible.

Our discussion so far has been quite elementary. We will deal with both the logic
circuits and the CAD tools in much more depth in the chapters that follow. But first, in
Chapter 3 we will examine the most important electronic technologies used to construct
logic circuits. This material will give the reader an appreciation of practical constraints that
a designer of logic circuits must face.

66

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

2.12 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 2.8

Problem: Determine if the following equation is valid
X1X3 4+ x2x3 + X1X2 = X1X2 + X1X3 + X2X3

Solution: The equation is valid if the expressions on the left- and right-hand sides represent
the same function. To perform the comparison, we could construct a truth table for each
side and see if the truth tables are the same. An algebraic approach is to derive a canonical
sum-of-products form for each expression.

Using the fact that x +X = 1 (Theorem 8b), we can manipulate the left-hand side as
follows:

LHS = X1X3 4+ xx3 + x1X2
= X1(x2 +X2)X3 + (X1 + X1)x2x3 + X1 X2 (X3 + X3)
= X1X2X3 + X1X2X3 + X1 X0X3 + X1X0X3 + X1X2X3 + X1X2X3

These product terms represent the minterms 2, 0, 7, 3, 5, and 4, respectively.
For the right-hand side we have

RHS = Xx + x1x3 + Xox3
=X1x02(x3 +X3) + X1 (2 +X2)x3 + (X1 + X)X2X3
= X1 X2X3 + X1X2X3 + X1X2X3 + X1X2X3 + X1X2X3 + X[X2X3
These product terms represent the minterms 3, 2, 7, 5, 4, and 0, respectively. Since both

expressions specify the same minterms, they represent the same function; therefore, the
equation is valid. Another way of representing this function is by > m(0, 2, 3,4, 5, 7).

Example 2.9

Problem: Design the minimum-cost product-of-sums expression for the function
f &, x0,x3,x4) =Y m(0,2,4,5,6,7,8,10, 12, 14, 15).

Solution: The function is defined in terms of its minterms. To find a POS expression we
should start with the definition in terms of maxterms, which is f = TIM (1, 3,9, 11, 13).
Thus,

S =M -M;5-My-M -M;
=X +x4+x3+X) 0 +x2+ X3+ X)X+ a2 +x3 + X)X +x + X3+ X)X + X+ X3+ Xy)

2.12 EXAMPLES OF SOLVED PROBLEMS 67

We can rewrite the product of the first two maxterms as

My M3 = (x; +x2 + X4 + x3) (X1 +x2 + X4 +X3) using commutative property 105

= X1 + X2 + X4 + X3X3 using distributive property 12b
=x1+x+x4+0 using theorem 8a
=X+ X+ Xs using theorem 6b

Similarly, My - My; = X1 + x» + X4. Now, we can use M|, again, according to property 7a,
to derive My; - M3 = x; + x3 + x4. Hence

=01 +x+X)G1 +x2 + X)X +x3 +X4)
Applying 12b again, we get the final answer
f =+ X)) + x3 +X4)

Problem: A circuit that controls a given digital system has three inputs: xi, x5, and x3. It Example 2.10
has to recognize three different conditions:

° Condition A is true if x3 is true and either x; is true or x; is false

° Condition B is true if x; is true and either x; or xj3 is false

° Condition C is true if x; is true and either x; is true or x3 is false

The control circuit must produce an output of 1 if at least two of the conditions A, B, and C
are true. Design the simplest circuit that can be used for this purpose.

Solution: Using 1 for true and O for false, we can express the three conditions as follows:
A =x3001 +X2) = x3x1 + 3%
B=x1(X2 +X3) = x1%2 +x1%3
C=x(x +X3) = xx +xx3

Then, the desired output of the circuit can be expressed as f = AB + AC + BC. These
product terms can be determined as:

AB = (x3x1 + x3%2) (x1%2 + X1X3)
= X3X1X1X2 + X3X1X1X3 + X3X2X1X2 + X3XpX1X3
= x3x1%2 + 0+ x3x0x1 +0

= X1X2X3

AC = (x3x1 + x3X2) (X2x1 + X2X3)
= X3X1X2X] + X3X1X2X3 + X3X2X2X] + X3X2X2X3
=xx1x+0+0+0

= X1X2X3

68 CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

BC = (x1x3 + x1X3) (x2x1 + x2X3)
= X1X2X2X1 + X1X2X2X3 + X1X3X2X] + X1X3X2X3
=0+ 0+ x1X3x + X1X3X2

= X1X2)_C3
Therefore, f can be written as
[= x1X2x3 + X1X0X3 + X1X2X3
= x1 (X2 + x2)x3 + x1x2(x3 + X3)
= X1X3 + X1X2

= x1(x3 + x2)

Example 2.11 Problem: Solve the problem in Example 2.10 by using Venn diagrams.

Solution: The Venn diagrams for functions A, B, and C in Example 2.10 are shown in parts
a to ¢ of Figure 2.36. Since the function f has to be true when two or more of A, B, and C
are true, then the Venn diagram for f is formed by identifying the common shaded areas in
the Venn diagrams for A, B, and C. Any area that is shaded in two or more of these diagrams
is also shaded in f, as shown in Figure 2.36d. This diagram corresponds to the function

f=xix2 +x1x3 = x1 (02 + x3)

0
X

o

()
278

o

(a) Function A

(b) Function B

0
A'Q

A
XN

&

(c) Function C

Figure 2.36

(d) Function f

The Venn diagrams for Example 2.11.

PROBLEMS 69

Problem: Derive the simplest sum-of-products expression for the function Example 2.12
[= XoX3X4 + X1X3X4 + X1 XXy
Solution: Applying the consensus property 17a to the first two terms yields
S = x2X3x4 + X1X3X4 + X2XaX1 X4 + X1 X2X4
= XpX3X4 + X1X3X4 + X1 X2X4 + X1 X2X4
Now, using the combining property 14a for the last two terms gives
[= x0X3x4 + X123%4 + X1 X4
Finally, using the absorption property 13a produces

S = x0X3x4 + x1x4

Problem: Derive the simplest product-of-sums expression for the function Example 2.13
[=01+ x+x3)00 + X2+ X)X + x5 + x4)
Solution: Applying the consensus property 17b to the first two terms yields
f=G+x+x3)&0 + X+ X)X + x5 + X1+ X)) (X + x5+ x4)
= (X1 +x2 +x3) (X1 + X2 + Xa) (X1 + X3 + Xg) (X1 + X3 + x4)
Now, using the combining property 145 for the last two terms gives
f =01+ x2+x3)00 + X2 + X)X +x3)
Finally, using the absorption property 136 on the first and last terms produces

=0 +%+X)& +x3)

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

2.1 Use algebraic manipulation to prove that x + yz = (x +y) - (x + z). Note that this is the
distributive rule, as stated in identity 126 in section 2.5.

2.2 Use algebraic manipulation to prove that (x +y) - (x +y) = x.

2.3 Use algebraic manipulation to prove that xy + yz + Xz = xy + xz. Note that this is the
consensus property 17a in section 2.5.

2.4 Use the Venn diagram to prove the identity in problem 2.1.

70

2.5

2.6

*2.7

2.8

2.9
2.10

2.11

*2.12

2.13

2.14

*2.15

2.16

2.17

2.18

2.19

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

Use the Venn diagram to prove DeMorgan’s theorem, as given in expressions 154 and 15b
in section 2.5.

Use the Venn diagram to prove that

(1 +x2 +x3) - (1 +x2 +X3) = x1 +x2

Determine whether or not the following expressions are valid, i.e., whether the left- and
right-hand sides represent the same function.

(a) X1x3 + x1X2X3 + X1X2 + X1 X2 = XoX3 + X1X3 + XoX3 + X[X0X3

(b) x1X3 + x2x3 + XoX3 = (x1 + X2 + x3) (X1 + X2 + X3) (X1 + X2 + X3)

(©) (1 +x3) (X1 + X2 +X3) (X1 +x2) = (x1 +x2) (2 + x3) (X1 + X3)

Draw a timing diagram for the circuit in Figure 2.19a. Show the waveforms that can be
observed on all wires in the circuit.

Repeat problem 2.8 for the circuit in Figure 2.195.

Use algebraic manipulation to show that for three input variables x, x,, and x3
D m(1,2,3,4,5,6,7) =x1 +x+x3
Use algebraic manipulation to show that for three input variables x, x,, and x3
M ©0,1,2,3,4,5,6) = x1xx3

Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x3 4+ XX + X1xX3 + X1 X2X3.

Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tiOIlf = xl)_Cz)_C?, =+ x1x0x4 + X])_62X3)_C4.

Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x1 +x3 +x4) - (X1 + X2 +x3) - (X1 + X2 + X3 + x4).

Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x1 + x2 +x3) - (X1 + X2 +x3) - (X1 + X2 +x3) - (X1 +2x2 +X3).

(a) Show the location of all minterms in a three-variable Venn diagram.
(b) Show a separate Venn diagram for each product term in the function f = x;Xx3 +
x1x2 + X1x3. Use the Venn diagram to find the minimal sum-of-products form of f.

Represent the function in Figure 2.18 in the form of a Venn diagram and find its minimal
sum-of-products form.

Figure P2.1 shows two attempts to draw a Venn diagram for four variables. For parts (a)
and (b) of the figure, explain why the Venn diagram is not correct. (Hint: the Venn diagram
must be able to represent all 16 minterms of the four variables.)

Figure P2.2 gives a representation of a four-variable Venn diagram and shows the location
of minterms myg, m;, and m,. Show the location of the other minterms in the diagram.
Represent the function f = XX,x3%4 + X1 X2X3%4 + XX on this diagram.

PROBLEMS 71

@) (b)

Figure P2.1 Two attempts to draw a four-variable Venn diagram.

*2.20

2.21

2.22

*2.23

2.24

2.25

2.26

AN,

Figure P2.2 A four-variable Venn diagram.

Design the simplest sum-of-products circuit that implements the function f (x|, x2, x3) =
> m(3,4,6,7).

Design the simplest sum-of-products circuit that implements the function f (x, x2, x3) =
> m(1,3,4,6,7).

Design the simplest product-of-sums circuit that implements the function f (x1, x2, x3) =
M (0, 2, 5).

Design the simplest product-of-sums expression for the function f (x;, x,, x3) = I[IM (0, 1,
5,7).

Derive the simplest sum-of-products expression for the function f(xj, xp,x3,x4) =
X])_C3)_C4 + XZ)_C3X4 + X])_Cz)_63.

Derive the simplest sum-of-products expression for the function f (x|, x2, X3, X1, X5) =
X1X3Xs + X1X3X4 + X1x4X5 + x1X2X3x5. (Hint: Use the consensus property 17a.)

Derive the simplest product-of-sums expression for the function f(xy,xp,x3,x4) =
(X1 + X3 + X4) (X2 + X3 4+ x4) (x; + X2 + x3). (Hint: Use the consensus property 17b.)

72

2.27

*2.28

2.29

2.30

2.31

*2.32

*2.33

2.34

2.35

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

Derive the simplest product-of-sums expression for the function f (x|, x2, x3, X4, X5) =
X2 + x3 + x5)(x1 + X3 + x5)(x1 + x2 + x5)(x1 + X4 + X5). (Hint: Use the consensus
property 17b.)

Design the simplest circuit that has three inputs, xi, x,, and x3, which produces an output
value of 1 whenever two or more of the input variables have the value 1; otherwise, the
output has to be 0.

Design the simplest circuit that has three inputs, xi, x,, and x3, which produces an output
value of 1 whenever exactly one or two of the input variables have the value 1; otherwise,
the output has to be 0.

Design the simplest circuit that has four inputs, x;, x», x3, and x4, which produces an output
value of 1 whenever three or more of the input variables have the value 1; otherwise, the
output has to be 0.

For the timing diagram in Figure P2.3, synthesize the function f (x;, x,, x3) in the simplest
sum-of-products form.

xlé |

9o] | —
so_ [LT 1 I L 1
o T 1| .

—= Time

Figure P2.3 A timing diagram representing a logic function.

For the timing diagram in Figure P2.3, synthesize the function f (x;, x,, x3) in the simplest
product-of-sums form.

For the timing diagram in Figure P2.4, synthesize the function f (x;, x5, x3) in the simplest
sum-of-products form.

For the timing diagram in Figure P2.4, synthesize the function f (x1, x», x3) in the simplest
product-of-sums form.

Design a circuit with output f and inputs x;, xo, y;, and yg. Let X = x;xo be a number,
where the four possible values of X, namely, 00, 01, 10, and 11, represent the four numbers
0, 1,2, and 3, respectively. (We discuss representation of numbers in Chapter 5.) Similarly,
let Y = y;yo represent another number with the same four possible values. The output f
should be 1 if the numbers represented by X and Y are equal. Otherwise, f should be 0.

(a) Show the truth table for f.

(b) Synthesize the simplest possible product-of-sums expression for f.

2.36

2.37
2.38
2.39
*2.40

2.41

*2.42
2.43
2.44

2.45

2.46

2.47

2.48

PROBLEMS 73

1

xlo |

xzé I | I

we T LT LTI 1 I
1

Fo | |

—= Time

Figure P2.4 A timing diagram representing a logic function.

Repeat problem 2.35 for the case where f should be 1 only if X > Y.
(a) Show the truth table for f.

(b) Show the canonical sum-of-products expression for f.

(c) Show the simplest possible sum-of-products expression for f.

Implement the function in Figure 2.26 using only NAND gates.
Implement the function in Figure 2.26 using only NOR gates.
Implement the circuit in Figure 2.35 using NAND and NOR gates.

Design the simplest circuit that implements the function f (x, X3, x3) = > m(3,4,6,7)
using NAND gates.

Design the simplest circuit that implements the function f (x;, x5, x3) = Y_m(1,3,4,6,7)
using NAND gates.

Repeat problem 2.40 using NOR gates.
Repeat problem 2.41 using NOR gates.

Use algebraic manipulation to derive the minimum sum-of-products expression for the
function f = x1X3 + x1x3 + X1X2 + X2x3.

Use algebraic manipulation to derive the minimum sum-of-products expression for the
function ' = X1X2x3 + X1X3 + X2X3 + X1X2X3.

Use algebraic manipulation to derive the minimum product-of-sums expression for the
function f = x, + x1x3 + X1 X3.

Use algebraic manipulation to derive the minimum product-of-sums expression for the
function f = (x1 +x2 +x3) (X1 + X2 + x3) (X1 + X2 + x3) (X1 + X2 + x3) (X1 + X2 + X3 + Xa).

(a) Use a schematic capture tool to draw schematics for the following functions
S1 = X2X3X4 + X1X2X4 + X1X0X3 + X1X2X3
fo = XXy + X1 + x2x3

(b) Use functional simulation to prove that f; = f5.

74

2.49

2.50
2.51

2.52

CHAPTER 2 « INTRODUCTION TO LOoGIC CIRCUITS

(a) Use a schematic capture tool to draw schematics for the following functions
fi=@+x+X) G+ x3+3Xg) - X +x3 +X) - (X1 +X3+X)
fo= 00 +X4) - (03 +X4) - (X1 +X4)

(b) Use functional simulation to prove that f; = f>.

Write VHDL code to implement the function f (x;, x2, x3) = »_m(0, 1, 3,4, 5, 6).

(a) Write VHDL code to describe the following functions

S1 = X1X3 + X0X3 + X3X4 + X1X2 + X1 X4
fo= (1 +X3) - (x1 +x2 +X4) - (02 + X3 + Xg)
(b) Use functional simulation to prove that f; = f>.

Consider the following VHDL assignment statements

f1 <= ((x1 AND x3) OR (NOT x1 AND NOT x3)) OR ((x2 AND x4) OR

(NOT x2 AND NOT x4)) ;

f2 <= (x1 AND x2 AND NOT x3 AND NOT x4) OR (NOT x1 AND NOT x2 AND x3 AND x4)

OR (x1 AND NOT x2 AND NOT x3 AND x4) OR
(NOT x1 AND x2 AND x3 AND NOT x4) ;

(a) Write complete VHDL code to implement f1 and f2.
(b) Use functional simulation to prove that f 1 = f2.

| REFERENCES

1. G Boole, An Investigation of the Laws of Thought, 1854, reprinted by Dover
Publications, New York, 1954.

2. C.E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Transactions
of AIEE 57 (1938), pp. 713-723.

3. E. V. Huntington, “Sets of Independent Postulates for the Algebra of Logic,”
Transactions of the American Mathematical Society 5 (1904), pp. 288-309.

4. S. Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design, 2nd
ed. McGraw-Hill: New York, 2007).

5. Z.Navabi, VHDL—Analysis and Modeling of Digital Systems, 2nd ed.
(McGraw-Hill: New York, 1998).

D. L. Perry, VHDL, 3rd ed. (McGraw-Hill: New York, 1998).
J. Bhasker, A VHDL Primer, 3rd ed. (Prentice-Hall: Englewood Cliffs, NJ, 1998).

10.
I1.

REFERENCES

K. Skahill, VHDL for Programmable Logic (Addison-Wesley: Menlo Park, CA,
1996).

A. Dewey, Analysis and Design of Digital Systems with VHDL (PWS Publishing Co.:
Boston, 1997).

D. J. Smith, HDL Chip Design, (Doone Publications: Madison, AL, 1996).

P. Ashenden, The Designer’s Guide to VHDL, 2nd ed. (Morgan Kaufmann: San
Francisco, CA, 2001).

75

chapter

3

IMPLEMENTATION TECHNOLOGY

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e How transistors operate and form simple switches

e Integrated circuit technology

e CMOS logic gates

e Field-programmable gate arrays and other programmable logic devices
e Basic characteristics of electronic circuits

77

78 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

In section 1.2 we said that logic circuits are implemented using transistors and that a number of different
technologies exist. We now explore technology issues in more detail.

Let us first consider how logic variables can be physically represented as signals in electronic circuits.
Our discussion will be restricted to binary variables, which can take on only the values O and 1. In a circuit
these values can be represented either as levels of voltage or current. Both alternatives are used in different
technologies. We will focus on the simplest and most popular representation, using voltage levels.

The most obvious way of representing two logic values as voltage levels is to define a threshold voltage;
any voltage below the threshold represents one logic value, and voltages above the threshold correspond to
the other logic value. It is an arbitrary choice as to which logic value is associated with the low and high
voltage levels. Usually, logic O is represented by the low voltage levels and logic 1 by the high voltages.
This is known as a positive logic system. The opposite choice, in which the low voltage levels are used to
represent logic 1 and the higher voltages are used for logic 0 is known as a negative logic system. In this
book we use only the positive logic system, but negative logic is discussed briefly in section 3.4.

Using the positive logic system, the logic values 0 and 1 are referred to simply as “low” and “high.”
To implement the threshold-voltage concept, a range of low and high voltage levels is defined, as shown in
Figure 3.1. The figure gives the minimum voltage, called Vs, and the maximum voltage, called Vpp, that
can exist in the circuit. We will assume that Vg is 0 volts, corresponding to electrical ground, denoted Gnd.
The voltage Vpp represents the power supply voltage. The most common levels for Vp are between 5 volts
and 1 volt. In this chapter we will mostly use the value Vpp = 5 V. Figure 3.1 indicates that voltages in the
range Gnd to Vj .y represent logic value 0. The name V) ,,,c means the maximum voltage level that a logic
circuit must recognize as low. Similarly, the range from V) ,,;, to Vpp corresponds to logic value 1, and V| .,
is the minimum voltage level that a logic circuit must interpret as high. The exact levels of Vi ey and Vi in

\oltage &

Voo
Logic value 1

Vl,min T

Undefined

VO,max T
Logic value 0

Vss (Gnd) ——

Figure 3.1 Representation of logic values by voltage levels.

3.1 TRANSISTOR SWITCHES 79

depend on the particular technology used; a typical example might set Vj ;.. to 40 percent of Vpp and Vi pin
to 60 percent of Vpp. The range of voltages between Vj 4 and Vi i, is undefined. Logic signals do not
normally assume voltages in this range except in transition from one logic value to the other. We will discuss
the voltage levels used in logic circuits in more depth in section 3.8.3.

3.1 TRANSISTOR SWITCHES

Logic circuits are built with transistors. A full treatment of transistor behavior is beyond
the scope of this text; it can be found in electronics textbooks, such as [1] and [2]. For
the purpose of understanding how logic circuits are built, we can assume that a transistor
operates as a simple switch. Figure 3.2a shows a switch controlled by alogic signal, x. When
x is low, the switch is open, and when x is high, the switch is closed. The most popular type
of transistor for implementing a simple switch is the metal oxide semiconductor field-effect
transistor (MOSFET). There are two different types of MOSFETs, known as n-channel,
abbreviated NMOS, and p-channel, denoted PMOS.

x = “low” X = *high”
—o/ o— —o—o0——

(a) A simple switch controlled by the input x

Gate

1

Source T T Drain
Substrate (Body)

(b) NMOS transistor

Ve

L

v —F L— v,
(c) Simplified symbol for an NMOS transistor

Figure 3.2 NMOS transistor as a switch.

80

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Figure 3.2b gives a graphical symbol for an NMOS transistor. It has four electrical
terminals, called the source, drain, gate, and substrate. In logic circuits the substrate (also
called body) terminal is connected to Gnd. We will use the simplified graphical symbol in
Figure 3.2¢, which omits the substrate node. There is no physical difference between the
source and drain terminals. They are distinguished in practice by the voltage levels applied
to the transistor; by convention, the terminal with the lower voltage level is deemed to be
the source.

A detailed explanation of how the transistor operates will be presented in section 3.8.1.
For now it is sufficient to know that it is controlled by the voltage Vi at the gate terminal.
If Vi is low, then there is no connection between the source and drain, and we say that
the transistor is turned off. If Vs is high, then the transistor is furned on and acts as a
closed switch that connects the source and drain terminals. In section 3.8.2 we show how
to calculate the resistance between the source and drain terminals when the transistor is
turned on, but for now assume that the resistance is 0 €2.

PMOS transistors have the opposite behavior of NMOS transistors. The former are
used to realize the type of switch illustrated in Figure 3.3a, where the switch is open when
the control input x is high and closed when x is low. A symbol is shown in Figure 3.3b.
In logic circuits the substrate of the PMOS transistor is always connected to Vpp, leading

x = *high” X =“low”
—c/ o— —_—O0—0—

(a) A switch with the opposite behavior of Figure 3.2a

Gate

Drain T T Source

Vbp

Substrate (Body)

(b) PMOS transistor

Ve

b

vo — I 1,
(c) Simplified symbol for an PMOS transistor

Figure 3.3 PMOS transistor as a switch.

3.1 TRANSISTOR SWITCHES

to the simplified symbol in Figure 3.3¢. If Vi is high, then the PMOS transistor is turned
off and acts like an open switch. When Vj; is low, the transistor is turned on and acts as a
closed switch that connects the source and drain. In the PMOS transistor the source is the
node with the higher voltage.

Figure 3.4 summarizes the typical use of NMOS and PMOS transistors in logic circuits.
An NMOS transistor is turned on when its gate terminal is high, while a PMOS transistor
is turned on when its gate is low. When the NMOS transistor is turned on, its drain is
pulled down to Gnd, and when the PMOS transistor is turned on, its drain is pulled up to
Vpp. Because of the way the transistors operate, an NMOS transistor cannot be used to
pull its drain terminal completely up to Vpp. Similarly, a PMOS transistor cannot be used
to pull its drain terminal completely down to Gnd. We discuss the operation of MOSFETSs
in considerable detail in section 3.8.

VD VD =0V VD
) AI i i
Vg=0V = — —
Closed switch Open switch
when Vg =Vpp whenVg =0V
(a) NMOS transistor
Vs=Vpp Vbp Vbb

T

Vb Vb Vb =Vpp
Open switch Closed switch
when Vg = Vpp whenVg =0V

(b) PMOS transistor

Figure 3.4 NMOS and PMOS transistors in logic circuits.

82

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

3.2 NMOS Logic GATES

The first schemes for building logic gates with MOSFETs became popular in the 1970s
and relied on either PMOS or NMOS transistors, but not both. Since the early 1980s, a
combination of both NMOS and PMOS transistors has been used. We will first describe
how logic circuits can be built using NMOS transistors because these circuits are easier
to understand. Such circuits are known as NMOS circuits. Then we will show how
NMOS and PMOS transistors are combined in the presently popular technology known as
complementary MOS, or CMOS.

In the circuit in Figure 3.5a, when V, = 0 V, the NMOS transistor is turned off. No
current flows through the resistor R, and V; = 5 V. On the other hand, when V, =5V, the
transistor is turned on and pulls V; to a low voltage level. The exact voltage level of V
in this case depends on the amount of current that flows through the resistor and transistor.
Typically, Vy is about 0.2 V (see section 3.8.3). If V; is viewed as a function of V,, then the
circuit is an NMOS implementation of a NOT gate. In logic terms this circuit implements
the function f = x. Figure 3.5b gives a simplified circuit diagram in which the connection
to the positive terminal on the power supply is indicated by an arrow labeled Vpp and the

R
5V ™
_T Vi
v
(a) Circuit diagram (b) Simplified circuit diagram

(c) Graphical symbols

Figure 3.5 A NOT gate built using NMOS technology.

3.2 NMOS Locic GATES

connection to the negative power-supply terminal is indicated by the Gnd symbol. We will
use this simplified style of circuit diagram throughout this chapter.

The purpose of the resistor in the NOT gate circuit is to limit the amount of current that
flows when V, = 5 V. Rather than using a resistor for this purpose, a transistor is normally
used. We will discuss this issue in more detail in section 3.8.3. In subsequent diagrams
a dashed box is drawn around the resistor R as a reminder that it is implemented using a
transistor.

Figure 3.5¢ presents the graphical symbols for a NOT gate. The left symbol shows the
input, output, power, and ground terminals, and the right symbol is simplified to show only
the input and output terminals. In practice only the simplified symbol is used. Another
name often used for the NOT gate is inverter. We use both names interchangeably in this
book.

In section 2.1 we saw that a series connection of switches corresponds to the logic AND
function, while a parallel connection represents the OR function. Using NMOS transistors,
we can implement the series connection as depicted in Figure 3.6a. If V,, = V,, =5V,

(a) Circuit (b) Truth table

x; —] x, —
f f
Xy — Xy, —

(c) Graphical symbols

Figure 3.6 NMOS realization of a NAND gate.

83

84

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

both transistors will be on and V; will be close to 0 V. But if either V,, or V,, is 0, then no
current will flow through the series-connected transistors and V; will be pulled up to 5 V.
The resulting truth table for f, provided in terms of logic values, is given in Figure 3.6b.
The realized function is the complement of the AND function, called the NAND function,
for NOT-AND. The circuit realizes a NAND gate. Its graphical symbols are shown in Fig-
ure 3.6¢.

The parallel connection of NMOS transistors is given in Figure 3.7a. Here, if either
Vi, =5VorV,, =5YV,then V; will be close to 0 V. Only if both V,, and V,, are 0 will V
be pulled up to 5 V. A corresponding truth table is given in Figure 3.7b. It shows that the
circuit realizes the complement of the OR function, called the NOR function, for NOT-OR.
The graphical symbols for the NOR gate appear in Figure 3.7c.

In addition to the NAND and NOR gates just described, the reader would naturally
be interested in the AND and OR gates that were used extensively in the previous chapter.
Figure 3.8 indicates how an AND gate is built in NMOS technology by following a NAND
gate with an inverter. Node A realizes the NAND of inputs x; and x,, and f represents the
AND function. In a similar fashion an OR gate is realized as a NOR gate followed by an
inverter, as depicted in Figure 3.9.

/

0 O 1

V % Ve, 4| 0110
1 0 0

1 1 0

(a) Circuit (b) Truth table

X X
X2 f Xz f

(c) Graphical symbols

Figure 3.7 NMOS realization of a NOR gate.

3.3 CMOS LogGIic GATES

(a) Circuit (b) Truth table

X, — X, —
X2 — xz E—

(c) Graphical symbols

Figure 3.8 NMOS realization of an AND gate.

85

3.3 CMOS Logic GATES

So far we have considered how to implement logic gates using NMOS transistors. For
each of the circuits that has been presented, it is possible to derive an equivalent circuit
that uses PMOS transistors. However, it is more interesting to consider how both NMOS
and PMOS transistors can be used together. The most popular such approach is known as
CMOS technology. We will see in section 3.8 that CMOS technology offers some attractive
practical advantages in comparison to NMOS technology.

In NMOS circuits the logic functions are realized by arrangements of NMOS transistors,
combined with a pull-up device that acts as a resistor. We will refer to the part of the circuit
that involves NMOS transistors as the pull-down network (PDN). Then the structure of the

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

f
0
1
1
1

= = O O
= O Bk O

(a) Circuit (b) Truth table

X X
X2 Xz

(c) Graphical symbols

Figure 3.9 NMOS realization of an OR gate.

circuits in Figures 3.5 through 3.9 can be characterized by the block diagram in Figure
3.10. The concept of CMOS circuits is based on replacing the pull-up device with a pull-up
network (PUN) that is built using PMOS transistors, such that the functions realized by the
PDN and PUN networks are complements of each other. Then a logic circuit, such as a
typical logic gate, is implemented as indicated in Figure 3.11. For any given valuation of
the input signals, either the PDN pulls V; down to Gnd or the PUN pulls V; up to Vpp. The
PDN and the PUN have equal numbers of transistors, which are arranged so that the two
networks are duals of one another. Wherever the PDN has NMOS transistors in series, the
PUN has PMOS transistors in parallel, and vice versa.

The simplest example of a CMOS circuit, a NOT gate, is shown in Figure 3.12. When
Vi = 0V, transistor T is off and transistor 7} is on. This makes V; = 5V, and since 75 is
off, no current flows through the transistors. When V, = 5V, T; is on and 7 is off. Thus
V¢ = 0V, and no current flows because T is off.

Akey point is that no current flows in a CMOS inverter when the input is either low or
high. This is true for all CMOS circuits; no current flows, and hence no power is dissipated

3.3 CMOS LogGIic GATES

Vbb
S
I >I
Vs
VXl
. Pull-down network
. PDN
v (PDN)

L

Figure 3.10 Structure of an NMOS circuit.

Vbb

|

Pull-up network
(PUN)
Vi
Vxl
: Pull-down network
v, . (PDN)

L

Figure 3.11 Structure of a CMOS circuit.

under steady state conditions. This property has led to CMOS becoming the most popular
technology in use today for building logic circuits. We will discuss current flow and power
dissipation in detail in section 3.8.

Figure 3.13 provides a circuit diagram of a CMOS NAND gate. It is similar to the
NMOS circuit presented in Figure 3.6 except that the pull-up device has been replaced by
the PUN with two PMOS transistors connected in parallel. The truth table in the figure

87

88 CHAPTER 3 ¢ IMPLEMENTATION TECHNOLOGY

x|T1T2|f

<
<

|||—I - L 5
<

0 on off | 1
1 off on | O
(a) Circuit (b) Truth table and transistor states

Figure 3.12 CMOS redlization of a NOT gate.

Vbp

T, B T,
Ve T Xp X Ty T, 7371, f
] 0 0 on on off off | 1
0 1 on off off on 1
., T, 1 0 | off on on off | 1
11 off off on on 0
(a) Circuit (b) Truth table and transistor states

Figure 3.13 CMOS realization of a NAND gate.

specifies the state of each of the four transistors for each logic valuation of inputs x; and
x;. The reader can verify that the circuit properly implements the NAND function. Under
static conditions no path exists for current flow from Vpp to Gnd.

The circuit in Figure 3.13 can be derived from the logic expression that defines the
NAND operation, f = x7x,. This expression specifies the conditions for which f = 1;

3.3 CMOS LogGIic GATES

hence it defines the PUN. Since the PUN consists of PMOS transistors, which are turned
on when their control (gate) inputs are set to 0, an input variable x; turns on a transistor if
x; = 0. From DeMorgan’s law, we have

f=Xxxm=xX+X

Thus f = 1 when either input x; or x; has the value 0, which means that the PUN must have
two PMOS transistors connected in parallel. The PDN must implement the complement of
f, which is

f=xx

Sincef = 1 when both x; and x, are 1, it follows that the PDN must have two NMOS
transistors connected in series.

The circuit for a CMOS NOR gate is derived from the logic expression that defines the
NOR operation

f=x1+x=XX

Since f = 1 only if both x| and x, have the value 0, then the PUN consists of two PMOS
transistors connected in series. The PDN, which realizesf = x; + xp, has two NMOS
transistors in parallel, leading to the circuit shown in Figure 3.14.

A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated
in Figure 3.15. Similarly, an OR gate is constructed with a NOR gate followed by a NOT
gate.

Vbp
T

1
]

sz O T2
J v X| X, T, T, T3 T, f
0 0 on on off off 1
‘l T, 0 1 | on off off on| 0
1 0 off on on off | 0
1 1 off off on on 0
(@) Circuit (b) Truth table and transistor states

Figure 3.14 CMOS redlization of a NOR gate.

89

90 CHAPTER 3 ¢ IMPLEMENTATION TECHNOLOGY

Vbb

3
-
[2
T

Figure 3.15 CMOS realization of an AND gate.

The above procedure for deriving a CMOS circuit can be applied to more general logic
functions to create complex gates. This process is illustrated in the following two examples.

Example 3.1 Consider the function
[=% +xx3

Since all variables appear in their complemented form, we can directly derive the PUN.
It consists of a PMOS transistor controlled by x; in parallel with a series combination of
PMOS transistors controlled by x; and x3. For the PDN we have

f =X +xx =x (0 +x3)

This expression gives the PDN that has an NMOS transistor controlled by x; in series with
a parallel combination of NMOS transistors controlled by x, and x3. The circuit is shown
in Figure 3.16.

Example 3.2 Consider the function
f=x+ (2 +X3)x4
Then

[=x100x3 + x4)

These expressions lead directly to the circuit in Figure 3.17.

3.4 NEGATIVE LoGIc SYSTEM

Vbp
Vs
v, I
V. I
V

L

Figure 3.16 The circuit for Example 3.1.

The circuits in Figures 3.16 and 3.17 show that it is possible to implement fairly complex
logic functions using combinations of series and parallel connections of transistors (acting
as switches), without implementing each series or parallel connection as a complete AND
(using the structure introduced in Figure 3.15) or OR gate.

3.3.1 SpEED OF LoGic GATE CIRCUITS

In the preceding sections we have assumed that transistors operate as ideal switches that
present no resistance to current flow. Hence, while we have derived circuits that realize
the functionality needed in logic gates, we have ignored the important issue of the speed of
operation of the circuits. In reality transistor switches have a significant resistance when
turned on. Also, transistor circuits include capacitors, which are created as a side effect
of the manufacturing process. These factors affect the amount of time required for signal
values to propagate through logic gates. We provide a detailed discussion of the speed of
logic circuits, as well as a number of other practical issues, in section 3.8.

91

3.4 NEGATIVE LOGIC SYSTEM

At the beginning of this chapter, we said that logic values are represented as two distinct
ranges of voltage levels. We are using the convention that the higher voltage levels represent

92

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Figure 3.17 The circuit for Example 3.2.

logic value 1 and the lower voltages represent logic value 0. This convention is known
as the positive logic system, and it is the one used in most practical applications. In this
section we briefly consider the negative logic system in which the association between
voltage levels and logic values is reversed.

Let us reconsider the CMOS circuit in Figure 3.13, which is reproduced in Figure
3.18a. Part (b) of the figure gives a truth table for the circuit, but the table shows voltage
levels instead of logic values. In this table, L refers to the low voltage level in the circuit,
which is 0 V, and H represents the high voltage level, which is Vpp. This is the style of
truth table that manufacturers of integrated circuits often use in data sheets to describe the
functionality of the chips. It is entirely up to the user of the chip as to whether L and H are
interpreted in terms of logic values suchthat L=0and H = 1,orL=1and H = 0.

Figure 3.19a illustrates the positive logic interpretation in which L = 0 and H = 1.
As we already know from the discussions of Figure 3.13, the circuit represents a NAND
gate under this interpretation. The opposite interpretation is shown in Figure 3.195. Here
negative logic is used so that L = 1 and H = 0. The truth table specifies that the circuit

3.4 NEGATIVE LoGIc SYSTEM

Xy

Xy

(a) Circuit (b) Voltage levels

Figure 3.18 Voltage levels in the circuit in Figure 3.13.

o O r K
or or
m O o o |-
[E S
oY=
.

(b) Negative logic truth table and gate symbol

Figure 3.19 Interpretation of the circuit in Figure 3.18.

93

94

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

represents a NOR gate in this case. Note that the truth table rows are listed in the opposite
order from what we normally use, to be consistent with the L and H values in Figure 3.18b.
Figure 3.19b also gives the logic gate symbol for the NOR gate, which includes small
triangles on the gate’s terminals to indicate that the negative logic system is used.

As another example, consider again the circuit in Figure 3.15. Its truth table, in terms
of voltage levels, is given in Figure 3.20a. Using the positive logic system, this circuit
represents an AND gate, as indicated in Figure 3.20b. But using the negative logic system,
the circuit represents an OR gate, as depicted in Figure 3.20c.

It is possible to use a mixture of positive and negative logic in a single circuit, which
is known as a mixed logic system. In practice, the positive logic system is used in most
applications. We will not consider the negative logic system further in this book.

L L|L
L H|L
HL|L
HHI|H

(a) Voltage levels

X, —]
: f
x2 —

(b) Positive logic

~ P oo
o r o
~ O o o |-

(c) Negative logic

Figure 3.20 Interpretation of the circuit in Figure 3.15.

3.5 STANDARD CHIPS

95

3.5 STANDARD CHIPS

In Chapter 1 we mentioned that several different types of integrated circuit chips are avail-
able for implementation of logic circuits. We now discuss the available choices in some
detail.

3.5.1 7400-SERIES STANDARD CHIPS

An approach used widely until the mid-1980s was to connect together multiple chips, each
containing only a few logic gates. A wide assortment of chips, with different types of logic
gates, is available for this purpose. They are known as 7400-series parts because the chip
part numbers always begin with the digits 74. An example of a 7400-series part is given
in Figure 3.21. Part (a) of the figure shows a type of package that the chip is provided in,
called a dual-inline package (DIP). Part (b) illustrates the 7404 chip, which comprises six
NOT gates. The chip’s external connections are called pins or leads. Two pins are used
to connect to Vpp and Gnd, and other pins provide connections to the NOT gates. Many
7400-series chips exist, and they are described in the data books produced by manufacturers
of these chips [3-7]. Diagrams of some of the chips are also included in several textbooks,
such as [8-12].

(a) Dual-inline package

(11 [T T[T [][]

>vDD _[>;

EREREREREREEE

(b) Structure of 7404 chip

Figure 3.21 A 7400-series chip.

96

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

The 7400-series chips are produced in standard forms by a number of integrated circuit
manufacturers, using agreed-upon specifications. Competition among various manufac-
turers works to the designer’s advantage because it tends to lower the price of chips and
ensures that parts are always readily available. For each specific 7400-series chip, several
variants are built with different technologies. For instance, the part called 74LS00 is built
with a technology called transistor-transistor logic (TTL), which is described in Appendix
E, whereas the 74HCOO is fabricated using CMOS technology. In general, the most popular
chips used today are the CMOS variants.

As an example of how a logic circuit can be implemented using 7400-series chips,
consider the function f = x;x, 4+ X,x3, which is shown in the form of a logic diagram
in Figure 2.30. A NOT gate is required to produce X, as well as 2 two-input AND gates
and a two-input OR gate. Figure 3.22 shows three 7400-series chips that can be used to
implement the function. We assume that the three input signals x;, x,, and x3 are produced
as outputs by some other circuitry that can be connected by wires to the three chips. Notice
that power and ground connections are included for all three chips. This example makes
use of only a portion of the gates available on the three chips, hence the remaining gates
can be used to realize other functions.

1~ S
|

(1 [1 11111

7404

sl il

N

L]

O

E

[1+
]
]
]
]
]
]
[]
]
]
]
[]
]

s N SRE S RES
D7 D7 D

0

—
| -
|
—
L]
—
| -
—

1 L] Ll_IL‘JLJI_II_II_I

X1

X

X3

Figure 3.22 An implementation of f = x;x, + Xx3.

3.5 STANDARD CHIPS

Because of their low logic capacity, the standard chips are seldom used in practice
today, with one exception. Many modern products include standard chips that contain
buffers. Buffers are logic gates that are usually used to improve the speed of circuits. An
example of a buffer chip is depicted in Figure 3.23. It is the 74244 chip, which comprises
eight tri-state buffers. We describe how tri-state buffers work in section 3.8.8. Rather than
showing how the buffers are arranged inside the chip package, as we did for the NOT gates
in Figure 3.21, we show only the pin numbers of the package pins that are connected to the
buffers. The package has 20 pins, and they are numbered in the same manner as shown for
Figure 3.21; Gnd and Vpp connections are provided on pins 10 and 20, respectively. Many
other buffer chips also exist. For example, the 162244 chip has 16 tri-state buffers. It is
part of a family of devices that are similar to the 7400-series chips but with twice as many
gates in each chip. These chips are available in multiple types of packages, with the most
popular being a small-outline integrated circuit (SOIC) package. An SOIC package has a
similar shape to a DIP, but the SOIC is considerably smaller in physical size.

As integrated circuit technology has improved over time, a system of classifying chips
according to their size has evolved. The earliest chips produced, such as the 7400-series
chips, comprise only a few logic gates. The technology used to produce these chips is
referred to as small-scale integration (SSI). Chips that include slightly more logic circuitry,
typically about 10 to 100 gates, represent medium-scale integration (MSI). Until the mid-
1980s chips that were too large to qualify as MSI were classified as large-scale integration
(LSI). In recent years the concept of classifying circuits according to their size has become
of little practical use. Most integrated circuits today contain many thousands or millions
of transistors. Regardless of their exact size, these large chips are said to be made with
very large scale integration (VLSI) technology. The trend in digital hardware products is
to integrate as much circuitry as possible onto a single chip. Thus most of the chips used
today are built with VLSI technology, and the older types of chips are used rarely.

N < [{e]} [e 0] o (92} L M~
i — i — — — — —
= = = = £ £ £ = <
o o o o o o o o o
| | | | |

—Zﬁ Y
| | | | |
— < [{e] [ee] (9] Lo M~ (o)}
c c c = k= < < c =
o A o o o o o o o

Figure 3.23 The 74244 buffer chip.

97

98

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

3.6 PROGRAMMABLE LoGIC DEVICES

The function provided by each of the 7400-series parts is fixed and cannot be tailored to suit
a particular design situation. This fact, coupled with the limitation that each chip contains
only a few logic gates, makes these chips inefficient for building large logic circuits. It is
possible to manufacture chips that contain relatively large amounts of logic circuitry with
a structure that is not fixed. Such chips were first introduced in the 1970s and are called
programmable logic devices (PLDs).

A PLD is a general-purpose chip for implementing logic circuitry. It contains a col-
lection of logic circuit elements that can be customized in different ways. A PLD can be
viewed as a “black box” that contains logic gates and programmable switches, as illustrated
in Figure 3.24. The programmable switches allow the logic gates inside the PLD to be
connected together to implement whatever logic circuit is needed.

3.6.1 PROGRAMMABLE LoGIC ARRAY (PLA)

Several types of PLDs are commercially available. The first developed was the pro-
grammable logic array (PLA). The general structure of a PLA is depicted in Figure 3.25.
Based on the idea that logic functions can be realized in sum-of-products form, a PLA
comprises a collection of AND gates that feeds a set of OR gates. As shown in the figure,
the PLA’s inputs xy, . . ., x,, pass through a set of buffers (which provide both the true value
and complement of each input) into a circuit block called an AND plane, or AND array.
The AND plane produces a set of product terms Py, ..., P;. Each of these terms can be
configured to implement any AND function of xi, ..., x,. The product terms serve as the
inputs to an OR plane, which produces the outputs fi, ..., f,,. Each output can be config-

—_— >
—_— _

Inputs Logic gates Outputs
(logic variables) and (logic functions)
_— programmable —

: switches :

—_— _

—_— >

Figure 3.24 Programmable logic device as a black box.

3.6 PROGRAMMABLE LoGIC DEVICES

X])C2 Xn
Input buffers
and
inverters
X4 561 X, J?n
Py
>
AND plane : OR plane
Pk
e ——_—
fy fm

Figure 3.25 General structure of a PLA.

ured to realize any sum of Py, ..., Py and hence any sum-of-products function of the PLA
inputs.

A more detailed diagram of a small PLA is given in Figure 3.26, which shows a PLA
with three inputs, four product terms, and two outputs. Each AND gate in the AND plane
has six inputs, corresponding to the true and complemented versions of the three input
signals. Each connection to an AND gate is programmable; a signal that is connected to
an AND gate is indicated with a wavy line, and a signal that is not connected to the gate is
shown with a broken line. The circuitry is designed such that any unconnected AND-gate
inputs do not affect the output of the AND gate. In commercially available PLAs, several
methods of realizing the programmable connections exist. Detailed explanation of how a
PLA can be built using transistors is given in section 3.10.

In Figure 3.26 the AND gate that produces P, is shown connected to the inputs x; and
x». Hence P; = x;xp. Similarly, P, = x1X3, P3 = X1X»x3, and P4 = x;x3. Programmable
connections also exist for the OR plane. Output f is connected to product terms Py,
P,, and P;. It therefore realizes the function f] = x1x; + x;X3 + X1 X2x3. Similarly, output
> = x1x4+X1X2x3 +x1x3. Although Figure 3.26 depicts the PLA programmed to implement
the functions described above, by programming the AND and OR planes differently, each
of the outputs f; and f> could implement various functions of x;, x,, and x3. The only
constraint on the functions that can be implemented is the size of the AND plane because it
produces only four product terms. Commercially available PLAs come in larger sizes than
we have shown here. Typical parameters are 16 inputs, 32 product terms, and eight outputs.

100

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

X X2 X3
Programmable
/ connections
N OR plane
N\ \ Py
N
A
_ N\ P
0 J
D—/\/—
Ava I
L]
%
] N\ P . .
A ! a
L]
AND plane
fy fy

Figure 3.26 Gate-level diagram of a PLA.

Although Figure 3.26 illustrates clearly the functional structure of a PLA, this style of
drawing is awkward for larger chips. Instead, it has become customary in technical literature
to use the style shown in Figure 3.27. Each AND gate is depicted as a single horizontal
line attached to an AND-gate symbol. The possible inputs to the AND gate are drawn as
vertical lines that cross the horizontal line. At any crossing of a vertical and horizontal
line, a programmable connection, indicated by an X, can be made. Figure 3.27 shows the
programmable connections needed to implement the product terms in Figure 3.26. Each
OR gate is drawn in a similar manner, with a vertical line attached to an OR-gate symbol.
The AND-gate outputs cross these lines, and corresponding programmable connections can
be formed. The figure illustrates the programmable connections that produce the functions
fi1 and f, from Figure 3.26.

The PLA is efficient in terms of the area needed for its implementation on an integrated
circuit chip. For this reason, PLAs are often included as part of larger chips, such as
microprocessors. In this case a PLA is created so that the connections to the AND and OR

3.6 PROGRAMMABLE LoGIC DEVICES

X X X3

OR plane

—% x) B E— *—
—% x) I

% NV ¢ *—
—x X)4 *—
AND plane Ej (j

f, f,

Figure 3.27 Customary schematic for the PLA in Figure 3.26.

gates are fixed, rather than programmable. In section 3.10 we will show that both fixed and
programmable PLAs can be created with similar structures.

3.6.2 PROGRAMMABLE ARRAY LocGIic (PAL)

In a PLA both the AND and OR planes are programmable. Historically, the programmable
switches presented two difficulties for manufacturers of these devices: they were hard to
fabricate correctly, and they reduced the speed-performance of circuits implemented in the
PLAs. These drawbacks led to the development of a similar device in which the AND plane
is programmable, but the OR plane is fixed. Such a chip is known as a programmable array
logic (PAL) device. Because they are simpler to manufacture, and thus less expensive than
PLAs, and offer better performance, PALs have become popular in practical applications.

An example of a PAL with three inputs, four product terms, and two outputs is given
in Figure 3.28. The product terms P; and P, are hardwired to one OR gate, and P3 and P4
are hardwired to the other OR gate. The PAL is shown programmed to realize the two logic
functions f; = x;x,X3 +X1xx3 and fo = XX, + x1x2x3. In comparison to the PLA in Figure
3.27, the PAL offers less flexibility; the PLA allows up to four product terms per OR gate,

101

102 CHAPTER 3 ¢ IMPLEMENTATION TECHNOLOGY

xl X2 X3
Py
—% % %)
fy
e —
P3
X% X%)
fy
—% % %)4

AND plane

Figure 3.28 An example of a PAL.

whereas the OR gates in the PAL have only two inputs. To compensate for the reduced
flexibility, PALs are manufactured in a range of sizes, with various numbers of inputs and
outputs, and different numbers of inputs to the OR gates. An example of a commercial PAL
is given in Appendix E.

So far we have assumed that the OR gates in a PAL, as in a PLA, connect directly to
the output pins of the chip. In many PALs extra circuitry is added at the output of each OR
gate to provide additional flexibility. It is customary to use the term macrocell to refer to
the OR gate combined with the extra circuitry. An example of the flexibility that may be
provided in a macrocell is given in Figure 3.29. The symbol labeled flip-flop represents a
memory element. It stores the value produced by the OR gate output at a particular point
in time and can hold that value indefinitely. The flip-flop is controlled by the signal called
clock. When clock makes a transition from logic value O to 1, the flip-flop stores the value
at its D input at that time and this value appears at the flip-flop’s Q output. Flip-flops are
used for implementing many types of logic circuits, as we will show in Chapter 7.

In section 2.8.2 we discussed a 2-to-1 multiplexer circuit. It has two data inputs, a
select input, and one output. The select input is used to choose one of the data inputs as
the multiplexer’s output. In Figure 3.29 a 2-to-1 multiplexer selects as an output from the
PAL either the OR-gate output or the flip-flop output. The multiplexer’s select line can be
programmed to be either O or 1. Figure 3.29 shows another logic gate, called a tri-state
buffer, connected between the multiplexer and the PAL output. We discuss tri-state buffers

3.6 PROGRAMMABLE LoGIic DEVICES 103

Select

Flip-flop
D Q

Clock >

Enable

N

To AND plane

Figure 3.29 Exira circuitry added to OR-gate outputs from Figure 3.28.

in section 3.8.8. Finally, the multiplexer’s output is “fed back” to the AND plane in the
PAL. This feedback connection allows the logic function produced by the multiplexer to be
used internally in the PAL, which allows the implementation of circuits that have multiple
stages, or levels, of logic gates.

A number of companies manufacture PLAs or PALs, or other, similar types of simple
PLDs (SPLDs). Apartial list of companies, and the types of SPLDs that they manufacture, is
given in Appendix E. An interested reader can examine the information that these companies
provide on their products, which is available on the World Wide Web (WWW). The WWW
locator for each company is given in Table E.1 in Appendix E.

3.6.3 PROGRAMMING OF PLAS AND PALS

In Figures 3.27 and 3.28, each connection between a logic signal in a PLA or PAL and the
AND/OR gates is shown as an X. We describe how these switches are implemented using
transistors in section 3.10. Users’ circuits are implemented in the devices by configuring,
or programming, these switches. Commercial chips contain a few thousand programmable
switches; hence it is not feasible for a user of these chips to specify manually the desired
programming state of each switch. Instead, CAD systems are employed for this purpose. We
introduced CAD tools in Chapter 2 and described methods for design entry and simulation
of circuits. For CAD systems that support targeting of circuits to PLDs, the tools have the
capability to automatically produce the necessary information for programming each of the
switches in the device. A computer system that runs the CAD tools is connected by a cable
to a dedicated programming unit. Once the user has completed the design of a circuit, the
CAD tools generate a file, often called a programming file or fuse map, that specifies the
state that each switch in the PLD should have, to realize correctly the designed circuit. The

104

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

PLD is placed into the programming unit, and the programming file is transferred from the
computer system. The programming unit then places the chip into a special programming
mode and configures each switch individually. A photograph of a programming unit is
shown in Figure 3.30. Several adaptors are shown beside the main unit; each adaptor is
used for a specific type of chip package.

The programming procedure may take a few minutes to complete. Usually, the pro-
gramming unit can automatically “read back” the state of each switch after programming,
to verify that the chip has been programmed correctly. A detailed discussion of the process
involved in using CAD tools to target designed circuits to programmable chips is given in
Appendices B, C, and D.

PLAs or PALs used as part of a logic circuit usually reside with other chips on a printed
circuit board (PCB). The procedure described above assumes that the chip can be removed
from the circuit board for programming in the programming unit. Removal is made possible
by using a socket on the PCB, as illustrated in Figure 3.31. Although PLAs and PALs are
available in the DIP packages shown in Figure 3.21a, they are also available in another
popular type of package, called a plastic-leaded chip carrier (PLCC), which is depicted in
Figure 3.31. On all four of its sides, the PLCC package has pins that “wrap around” the
edges of the chip, rather than extending straight down as in the case of a DIP. The socket
that houses the PLCC is attached by solder to the circuit board, and the PLCC is held in the
socket by friction.

Instead of relying on a programming unit to configure a chip, it would be advantageous
to be able to perform the programming while the chip is still attached to its circuit board. This
method of programming is called in-system programming (ISP). It is not usually provided
for PLAs or PALs, but is available for the more sophisticated chips that are described below.

.
e,

O S

Figure 3.30 A PLD programming unit (courtesy of Data IO Corp.).

3.6 PROGRAMMABLE LoGIic DEVICES

Figure 3.31 A PLCC package with socket.

3.6.4 ComMPLEX PROGRAMMABLE LoGIic DEVICES (CPLDs)

PLAs and PALs are useful for implementing a wide variety of small digital circuits. Each
device can be used to implement circuits that do not require more than the number of inputs,
product terms, and outputs that are provided in the particular chip. These chips are limited
to fairly modest sizes, typically supporting a combined number of inputs plus outputs of not
more than 32. For implementation of circuits that require more inputs and outputs, either
multiple PLAs or PALs can be employed or else a more sophisticated type of chip, called
a complex programmable logic device (CPLD), can be used.

A CPLD comprises multiple circuit blocks on a single chip, with internal wiring re-
sources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL; we
will refer to the circuit blocks as PAL-like blocks. An example of a CPLD is given in Figure
3.32. It includes four PAL-like blocks that are connected to a set of interconnection wires.
Each PAL-like block is also connected to a subcircuit labeled /O block, which is attached
to a number of the chip’s input and output pins.

Figure 3.33 shows an example of the wiring structure and the connections to a PAL-like
block in a CPLD. The PAL-like block includes 3 macrocells (real CPLDs typically have
about 16 macrocells in a PAL-like block), each consisting of a four-input OR gate (real
CPLDs usually provide between 5 and 20 inputs to each OR gate). The OR-gate output
is connected to another type of logic gate that we have not yet introduced. It is called an
Exclusive-OR (XOR) gate. We discuss XOR gates in section 3.9.1. The behavior of an
XOR gate is the same as for an OR gate except that if both of the inputs are 1, the XOR gate

105

106

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

- -
- =
=1 PAL-like PAL-like A S
o) O
ol ° block block k<)
< . . o
= =

- -
| I I I I I I |
= . . e

Interconnection wires
— =
y I I I I I I y

- -
x| . . 0=
ol . PAL-like PAL-like .]©
o] O
ol.” block block . <)
= ~

- -

Figure 3.32 Structure of a complex programmable logic device (CPLD).

produces a 0. One input to the XOR gate in Figure 3.33 can be programmably connected
to 1 or O; if 1, then the XOR gate complements the OR-gate output, and if O, then the XOR
gate has no effect. The macrocell also includes a flip-flop, a multiplexer, and a tri-state
buffer. As we mentioned in the discussion for Figure 3.29, the flip-flop is used to store the
output value produced by the OR gate. Each tri-state buffer (see section 3.8.8) is connected
to a pin on the CPLD package. The tri-state buffer acts as a switch that allows each pin to
be used either as an output from the CPLD or as an input. To use a pin as an output, the
corresponding tri-state buffer is enabled, acting as a switch that is turned on. If the pin is
to be used as an input, then the tri-state buffer is disabled, acting as a switch that is turned
off. In this case an external source can drive a signal onto the pin, which can be connected
to other macrocells using the interconnection wiring.

The interconnection wiring contains programmable switches that are used to connect
the PAL-like blocks. Each of the horizontal wires can be connected to some of the vertical
wires that it crosses, but not to all of them. Extensive research has been done to decide
how many switches should be provided for connections between the wires. The number
of switches is chosen to provide sufficient flexibility for typical circuits without wasting
many switches in practice. One detail to note is that when a pin is used as an input, the
macrocell associated with that pin cannot be used and is therefore wasted. Some CPLDs
include additional connections between the macrocells and the interconnection wiring that
avoids wasting macrocells in such situations.

Commercial CPLDs range in size from only 2 PAL-like blocks to more than 100 PAL-
like blocks. They are available in a variety of packages, including the PLCC package that
is shown in Figure 3.31. Figure 3.34a shows another type of package used to house CPLD
chips, called a quad flat pack (QFP). Like a PLCC package, the QFP package has pins on all

3.6 PROGRAMMABLE LoGIC DEVICES 107
L]
L]
L]

PAL-like block (details not shown)

Figure 3.33 A section of the CPLD in Figure 3.32.

four sides, but whereas the PLCC’s pins wrap around the edges of the package, the QFP’s
pins extend outward from the package, with a downward-curving shape. The QFP’s pins
are much thinner than those on a PLCC, which means that the package can support a larger
number of pins; QFPs are available with more than 200 pins, whereas PLCCs are limited
to fewer than 100 pins.

Most CPLDs contain the same type of programmable switches that are used in SPLDs,
which are described in section 3.10. Programming of the switches may be accomplished
using the same technique described in section 3.6.3, in which the chip is placed into a special-
purpose programming unit. However, this programming method is rather inconvenient for
large CPLDs for two reasons. First, large CPLDs may have more than 200 pins on the chip

108 CHAPTER 3 ¢ IMPLEMENTATION TECHNOLOGY

(a) CPLD in a Quad Flat Pack (QFP) package

To computer

Printed
circuit board

(b) JTAG programming

Figure 3.34 CPLD packaging and programming.

package, and these pins are often fragile and easily bent. Second, to be programmed in a
programming unit, a socket is required to hold the chip. Sockets for large QFP packages
are very expensive; they sometimes cost more than the CPLD device itself. For these
reasons, CPLD devices usually support the ISP technique. A small connector is included
on the PCB that houses the CPLD, and a cable is connected between that connector and a
computer system. The CPLD is programmed by transferring the programming information
generated by a CAD system through the cable, from the computer into the CPLD. The
circuitry on the CPLD that allows this type of programming has been standardized by the
IEEE and is usually called a JTAG port. It uses four wires to transfer information between
the computer and the device being programmed. The term JTAG stands for Joint Test Action
Group. Figure 3.34b illustrates the use of a JTAG port for programming two CPLDs on a
circuit board. The CPLDs are connected together so that both can be programmed using
the same connection to the computer system. Once a CPLD is programmed, it retains the
programmed state permanently, even when the power supply for the chip is turned off. This
property is called nonvolatile programming.

CPLDs are used for the implementation of many types of digital circuits. In industrial
designs that employ some type of PLD device, CPLDs are used often, while SPLDs are
becoming less common. A number of companies offer competing CPLDs. Appendix E lists,

3.6 PROGRAMMABLE LoGIC DEVICES

in Table E.2, the names of the major companies involved and shows the companies” WWW
locators. The reader is encouraged to examine the product information that each company
provides on its Web pages. An example of a popular commercial CPLD is described in
detail in Appendix E.

3.6.5 FIELD-PROGRAMMABLE GATE ARRAYS

The types of chips described above, 7400 series, SPLDs, and CPLDs, are useful for im-
plementation of a wide range of logic circuits. Except for CPLDs, these devices are rather
small and are suitable only for relatively simple applications. Even for CPLDs, only mod-
erately large logic circuits can be accommodated in a single chip. For cost and performance
reasons, it is prudent to implement a desired logic circuit using as few chips as possible, so
the amount of circuitry on a given chip and its functional capability are important. One way
to quantify a circuit’s size is to assume that the circuit is to be built using only simple logic
gates and then estimate how many of these gates are needed. A commonly used measure is
the total number of two-input NAND gates that would be needed to build the circuit; this
measure is often called the number of equivalent gates.

Using the equivalent-gates metric, the size of a 7400-series chip is simple to measure
because each chip contains only simple gates. For SPLDs and CPLDs the typical measure
used is that each macrocell represents about 20 equivalent gates. Thus a typical PAL that
has eight macrocells can accommodate a circuit that needs up to about 160 gates, and a
large CPLD that has 500 macrocells can implement circuits of up to about 10,000 equivalent
gates.

By modern standards, a logic circuit with 10,000 gates is not large. To implement
larger circuits, it is convenient to use a different type of chip that has a larger logic capacity.
A field-programmable gate array (FPGA) is a programmable logic device that supports
implementation of relatively large logic circuits. FPGAs are quite different from SPLDs
and CPLDs because FPGAs do not contain AND or OR planes. Instead, FPGAs provide
logic blocks for implementation of the required functions. The general structure of an FPGA
is illustrated in Figure 3.35a. It contains three main types of resources: logic blocks, I/O
blocks for connecting to the pins of the package, and interconnection wires and switches.
The logic blocks are arranged in a two-dimensional array, and the interconnection wires
are organized as horizontal and vertical routing channels between rows and columns of
logic blocks. The routing channels contain wires and programmable switches that allow
the logic blocks to be interconnected in many ways. Figure 3.35a shows two locations for
programmable switches; the blue boxes adjacent to logic blocks hold switches that connect
the logic block input and output terminals to the interconnection wires, and the blue boxes
that are diagonally between logic blocks connect one interconnection wire to another (such
as a vertical wire to a horizontal wire). Programmable connections also exist between the
I/0 blocks and the interconnection wires. The actual number of programmable switches
and wires in an FPGA varies in commercially available chips.

FPGAs can be used to implement logic circuits of more than a million equivalent
gates in size. Some examples of commercial FPGA products, from Altera and Xilinx, are
described in Appendix E. FPGA chips are available in a variety of packages, including the

109

110

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

D Logic block |:| Interconnection switches

1/0 block

1/0 block
32019 O/I

1/0 block

(a) General structure of an FPGA

(b) Pin grid array (PGA) package (bottom view)

Figure 3.35 A field-programmable gate array (FPGA).

PLCC and QFP packages described earlier. Figure 3.35b depicts another type of package,
called a pin grid array (PGA). A PGA package may have up to a few hundred pins in
total, which extend straight outward from the bottom of the package, in a grid pattern. Yet
another packaging technology that has emerged is known as the ball grid array (BGA).
The BGA is similar to the PGA except that the pins are small round balls, instead of posts.

3.6 PROGRAMMABLE LoGIC DEVICES

The advantage of BGA packages is that the pins are very small; hence more pins can be
provided on a relatively small package.

Each logic block in an FPGA typically has a small number of inputs and outputs. A
variety of FPGA products are on the market, featuring different types of logic blocks. The
most commonly used logic block is a lookup table (LUT), which contains storage cells that
are used to implement a small logic function. Each cell is capable of holding a single logic
value, either 0 or 1. The stored value is produced as the output of the storage cell. LUTs
of various sizes may be created, where the size is defined by the number of inputs. Figure
3.36a shows the structure of a small LUT. It has two inputs, x; and x,, and one output, f.
It is capable of implementing any logic function of two variables. Because a two-variable
truth table has four rows, this LUT has four storage cells. One cell corresponds to the output
value in each row of the truth table. The input variables x; and x; are used as the select inputs
of three multiplexers, which, depending on the valuation of x; and x;, select the content of
one of the four storage cells as the output of the LUT. We introduced multiplexers in section
2.8.2 and will discuss storage cells in Chapter 10.

To see how a logic function can be realized in the two-input LUT, consider the truth
table in Figure 3.36b. The function f; from this table can be stored in the LUT as illustrated in

X
0/1
0/1
— f
0/1 0 0 1
0/1 0 1 0
1 0 0
X 1 1 1
(a) Circuit for a two-input LUT (b) £} = x1x2+x,x,
X1
1
0 .
L/,
0
1
X2

(c) Storage cell contents in the LUT

Figure 3.36 A two-input lookup table (LUT).

112

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Figure 3.36¢. The arrangement of multiplexers in the LUT correctly realizes the function f;.
When x; = x, = 0, the output of the LUT is driven by the top storage cell, which represents
the entry in the truth table for x;x, = 00. Similarly, for all valuations of x; and x,, the logic
value stored in the storage cell corresponding to the entry in the truth table chosen by the
particular valuation appears on the LUT output. Providing access to the contents of storage
cells is only one way in which multiplexers can be used to implement logic functions. A
detailed presentation of the applications of multiplexers is given in Chapter 6.

Figure 3.37 shows a three-input LUT. It has eight storage cells because a three-variable
truth table has eight rows. In commercial FPGA chips, LUTs usually have either four or
five inputs, which require 16 and 32 storage cells, respectively. In Figure 3.29 we showed
that PALs usually have extra circuitry included with their AND-OR gates. The same is true
for FPGAs, which usually have extra circuitry, besides a LUT, in each logic block. Figure
3.38 shows how a flip-flop may be included in an FPGA logic block. As discussed for

X

X2 <

0/1

0/1 |

0/1

0/1

:D_ ;

0/1

0/1

0/1

0/1

+—\ /l_\ /13\ /’—\ /

X3

Figure 3.37 A three-input LUT.

Select

Flip-flop
In,
In, LUT D Q

In,

Out

Clock >

Figure 3.38 Inclusion of a flip-flop in an FPGA logic block.

3.6 PROGRAMMABLE LoGIC DEVICES

Figure 3.29, the flip-flop is used to store the value of its D input under control of its clock
input. Examples of logic blocks in commercial FPGAs are presented in Appendix E.

For a logic circuit to be realized in an FPGA, each logic function in the circuit must be
small enough to fit within a single logic block. In practice, a user’s circuit is automatically
translated into the required form by using CAD tools (see Chapter 12). When a circuit
is implemented in an FPGA, the logic blocks are programmed to realize the necessary
functions and the routing channels are programmed to make the required interconnections
between logic blocks. FPGAs are configured by using the ISP method, which we explained
in section 3.6.4. The storage cells in the LUTs in an FPGA are volatile, which means that
they lose their stored contents whenever the power supply for the chip is turned off. Hence
the FPGA has to be programmed every time power is applied. Often a small memory
chip that holds its data permanently, called a programmable read-only memory (PROM),
is included on the circuit board that houses the FPGA. The storage cells in the FPGA are
loaded automatically from the PROM when power is applied to the chips.

A small FPGA that has been programmed to implement a circuit is depicted in Figure
3.39. The FPGA has two-input LUTs, and there are four wires in each routing channel.
The figure shows the programmed states of both the logic blocks and wiring switches in
a section of the FPGA. Programmable wiring switches are indicated by an X. Each switch
shown in blue is turned on and makes a connection between a horizontal and vertical wire.

/
" }
* *
0 x, 0
0 1
X2 X2 Y30
03
T *)k
3 03 3

~ ~
) —_
=)

Figure 3.39 A section of a programmed FPGA.

113

114

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

The switches shown in black are turned off. We describe how the switches are implemented
by using transistors in section 3.10.1. The truth tables programmed into the logic blocks in
the top row of the FPGA correspond to the functions f; = x1x; and f, = X,x3. The logic
block in the bottom right of the figure is programmed to produce f = fi +f, = x1x2 + X2x3.

3.6.6 UsinGg CAD TooLs To IMPLEMENT CIrcuITS IN CPLDs
AND FPGASs

In section 2.9 we suggested the reader should work through Tutorial 1, in Appendix B,
to gain some experience using real CAD tools. Tutorial 1 covers the steps of design
entry and functional simulation. Now that we have discussed some of the details of the
implementation of circuits in chips, the reader may wish to experiment further with the
CAD tools. In Tutorials 2 and 3 (Appendices C and D) we show how circuits designed with
CAD tools can be implemented in CPLD and FPGA chips.

3.6.7 AprpPLICATIONS OF CPLDs aAnND FPGAS

CPLDs and FPGAss are used today in many diverse applications, such as consumer products
like DVD players and high-end television sets, controller circuits for automobile factories
and test equipment, Internet routers and high-speed network switches, and computer equip-
ment like large tape and disk storage systems.

In a given design situation a CPLD may be chosen when the needed circuit is not very
large, or when the device has to perform its function immediately upon application of power
to the circuit. FPGAs are not a good choice for this latter case because, as we mentioned
before, they are configured by volatile storage elements that lose their stored contents when
the power is turned off. This property results in a delay before the FPGA chip can perform
its function when turned on.

FPGAs are suitable for implementation of circuits over a large range of size, from
about 1000 to more than a million equivalent logic gates. In addition to size a designer
will consider other criteria, such as the needed speed of operation of a circuit, power
dissipation constraints, and the cost of the chips. When FPGAs do not meet one or more of
the requirements, the user may choose to create a custom-manufactured chip as described
below.

3.7 Custom CHIPS, STANDARD CELLS, AND GATE ARRAYS

The key factor that limits the size of a circuit that can be accommodated in a PLD is the
existence of programmable switches. Although these switches provide the important benefit
of user programmability, they consume a significant amount of space on the chip, which
leads to increased cost. They also result in a reduction in the speed of operation of circuits,
and an increase in power consumption. In this section we will introduce some integrated
circuit technologies that do not contain programmable switches.

3.7 Custom CHIPS, STANDARD CELLS, AND GATE ARRAYS

To provide the largest number of logic gates, highest circuit speed, or lowest power, a
so-called custom chip can be manufactured. Whereas a PLD is prefabricated, containing
logic gates and programmable switches that are programmed to realize a user’s circuit, a
custom chip is created from scratch. The designer of a custom chip has complete flexibility
to decide the size of the chip, the number of transistors the chip contains, the placement of
each transistor on the chip, and the way the transistors are connected together. The process
of defining exactly where on the chip each transistor and wire is situated is called chip
layout. For a custom chip the designer may create any layout that is desired. A custom chip
requires a large amount of design effort and is therefore expensive. Consequently, such
chips are produced only when standard parts like FPGAs do not meet the requirements. To
justify the expense of a custom chip, the product being designed must be expected to sell in
sufficient quantities to recoup the cost. Two examples of products that are usually realized
with custom chips are microprocessors and memory chips.

In situations where the chip designer does not need complete flexibility for the layout
of each individual transistor in a custom chip, some of the design effort can be avoided
by using a technology known as standard cells. Chips made using this technology are
often called application-specific integrated circuits (ASICs). This technology is illustrated
in Figure 3.40, which depicts a small portion of a chip. The rows of logic gates may be
connected by wires that are created in the routing channels between the rows of gates. In
general, many types of logic gates may be used in such a chip. The available gates are
prebuilt and are stored in a library that can be accessed by the designer. In Figure 3.40 the
wires are drawn in two colors. This scheme is used because metal wires can be created
on integrated circuits in multiple /ayers, which makes it possible for two wires to cross
one another without creating a short circuit. The blue wires represent one layer of metal
wires, and the black wires are a different layer. Each blue square represents a hard-wired
connection (called a via) between a wire on one layer and a wire on the other layer. In
current technology it is possible to have eight or more layers of metal wiring. Some of the

’_w] 1T Hrd

x, — I 17 [2 />
Xy ————— 1+ 8 B—n
[]
x5 i1
i

Figure 3.40 A section of two rows in a standard-cell chip.

115

116

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

metal layers can be placed on top of the transistors in the logic gates, resulting in a more
efficient chip layout.

Like a custom chip, a standard-cell chip is created from scratch according to a user’s
specifications. The circuitry shown in Figure 3.40 implements the two logic functions
that we realized in a PLA in Figure 3.26, namely, fi = x1x, + x1X3 + X1X2x3 and o =
X1x2 + X1%2x3 + x1x3. Because of the expense involved, a standard-cell chip would never
be created for a small circuit such as this one, and thus the figure shows only a portion
of a much larger chip. The layout of individual gates (standard cells) is predesigned and
fixed. The chip layout can be created automatically by CAD tools because of the regular
arrangement of the logic gates (cells) in rows. A typical chip has many long rows of logic
gates with a large number of wires between each pair of rows. The I/O blocks around the
periphery connect to the pins of the chip package, which is usually a QFP, PGA, or BGA
package.

Another technology, similar to standard cells, is the gate-array technology. In a gate
array parts of the chip are prefabricated, and other parts are custom fabricated for a par-
ticular user’s circuit. This concept exploits the fact that integrated circuits are fabricated
in a sequence of steps, some steps to create transistors and other steps to create wires to
connect the transistors together. In gate-array technology, the manufacturer performs most
of the fabrication steps, typically those involved in the creation of the transistors, without
considering the requirements of a user’s circuit. This process results in a silicon wafer (see
Figure 1.1) of partially finished chips, called the gate-array template. Later the template is
modified, usually by fabricating wires that connect the transistors together, to create a user’s
circuit in each finished chip. The gate-array approach provides cost savings in comparison
to the custom-chip approach because the gate-array manufacturer can amortize the cost of
chip fabrication over a large number of template wafers, all of which are identical. Many
variants of gate-array technology exist. Some have relatively large logic cells, while others
are configurable at the level of a single transistor.

An example of a gate-array template is given in Figure 3.41. The gate array contains a
two-dimensional array of logic cells. The chip’s general structure is similar to a standard-
cell chip except that in the gate array all logic cells are identical. Although the types of logic
cells used in gate arrays vary, one common example is a two- or three-input NAND gate.
In some gate arrays empty spaces exist between the rows of logic cells to accommodate
the wires that will be added later to connect the logic cells together. However, most gate
arrays do not have spaces between rows of logic cells, and the interconnection wires are
fabricated on top of the logic cells. This design is possible because, as discussed for Figure
3.40, metal wires can be created on a chip in multiple layers. This approach is known as the
sea-of-gates technology. Figure 3.42 depicts a small section of a gate array that has been
customized to implement the logic function f = x,x3 + x1x3. As we showed in section 2.7,
it is easy to verify that this circuit with only NAND gates is equivalent to the AND-OR
form of the circuit.

3.7 Custom CHIPS, STANDARD CELLS, AND GATE ARRAYS

[l
[l
[l

O O O
0y Quogg O
0U 0ogogg O
00 - DUUOU
00U QUU0U

Y GUUTY
0O O

[l
[

5 00U 00000
DD...

o 00 7 00000 S

ooooaon -

Figure 3.41 A sea-of-gates gate array.

J

[T

JAVASAY

— > D>
—

I N

Figure 3.42 The logic function f; = x,%; + x,x; in the gate array of Figure 3.41.

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

3.8 PRACTICAL ASPECTS

So far in this chapter, we have described the basic operation of logic gate circuits and given
examples of commercial chips. In this section we provide more detailed information on
several aspects of digital circuits. We describe how transistors are fabricated in silicon and
give a detailed explanation of how transistors operate. We discuss the robustness of logic
circuits and discuss the important issues of signal propagation delays and power dissipation
in logic gates.

3.8.1 MOSFET FABRICATION AND BEHAVIOR

To understand the operation of NMOS and PMOS transistors, we need to consider how
they are built in an integrated circuit. Integrated circuits are fabricated on silicon wafers.
A silicon wafer (see Figure 1.1) is usually 6, 8, or 12 inches in diameter and is somewhat
similar in appearance to an audio compact disc (CD). Many integrated circuit chips are
fabricated on one wafer, and the wafer is then cut to provide the individual chips.

Silicon is an electrical semiconductor, which means that it can be manipulated such
that it sometimes conducts electrical current and at other times does not. A transistor is
fabricated by creating areas in the silicon substrate that have an excess of either positive
or negative electrical charge. Negatively charged areas are called type n, and positively
charged areas are type p. Figure 3.43 illustrates the structure of an NMOS transistor. It has
type n silicon for both the source and drain terminals, and type p for the substrate terminal.
Metal wiring is used to make electrical connections to the source and drain terminals.

When MOSFETs were invented, the gate terminal was made of metal. Now a material
known as polysilicon is used. Like metal, polysilicon is a conductor, but polysilicon is
preferable to metal because the former has properties that allow MOSFETSs to be fabricated
with extremely small dimensions. The gate is electrically isolated from the rest of the
transistor by a layer of silicon dioxide (SiO,), which is a type of glass that acts as an electrical
insulator between the gate terminal and the substrate of the transistor. The transistor’s
operation is governed by electrical fields caused by voltages applied to its terminals, as
discussed below.

In Figure 3.43 the voltage levels applied at the source, gate, and drain terminals are
labeled Vg, Vi, and Vp, respectively. Consider first the situation depicted in Figure 3.43a in
which both the source and gate are connected to Gnd (Vs = Vi = 0 V). The type n source
and type n drain are isolated from one another by the type p substrate. In electrical terms two
diodes exist between the source and drain. One diode is formed by the p—n junction between
the substrate and source, and the other diode is formed by the p—n junction between the
substrate and drain. These back-to-back diodes represent a very high resistance (about 10'?
2 [1]) between the drain and source that prevents current flow. We say that the transistor
is turned off, or cut off, in this state.

Next consider the effect of increasing the voltage at the gate terminal with respect to
the voltage at the source. Let Vg represent the gate-to-source voltage. If Vg is greater
than a certain minimum positive voltage, called the threshold voltage Vr, then the transistor
changes from an open switch to a closed switch, as explained below. The exact level of V;
depends on many factors, but it is typically about 0.2 Vpp.

3.8 PRACTICAL ASPECTS

Ve=0V
s v,
++++++
— ++++++
Source (type n) = Drain (type n)
(a) When Vs =0V, the transistor is off
Vbp
V=0V
Vp =0V

++++++ ———::l:::'++++++
+ 4+t - + 4+t

= Channel (n-type)
(b) When Vgg =5V, the transistor is on

Figure 3.43 Physical structure of an NMOS transistor.

The transistor’s state when Vg > V7 is illustrated in Figure 3.43b. The gate terminal
is connected to Vpp, resulting in Vgg = 5 V. The positive voltage on the gate attracts free
electrons that exist in the type n source terminal, as well as in other areas of the transistor,
toward the gate. Because the electrons cannot pass through the layer of glass under the
gate, they gather in the region of the substrate between the source and drain, which is called
the channel. This concentration of electrons inverts the silicon in the area of the channel
from type p to type n, which effectively connects the source and the drain. The size of
the channel is determined by the length and width of the gate. The channel length L is the
dimension of the gate between the source and drain, and the channel width W is the other

119

120

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

dimension. The channel can also be thought of as having a depth, which is dependent on
the applied voltages at the source, gate, and drain.

No current can flow through the gate node of the transistor, because of the layer of
glass that insulates the gate from the substrate. A current I, may flow from the drain node
to the source. For a fixed value of Vgg > Vi, the value of Ip depends on the voltage
applied across the channel V. If Vg = 0V, then no current flows. As Vpy is increased,
Ip increases approximately linearly with the applied Vg, as long as V) is sufficiently small
to provide at least Vr volts across the drain end of the channel, that is Vgp > V7. In this
range of voltages, namely, 0 < Vpg < (Vs — V7), the transistor is said to operate in the
triode region, also called the linear region. The relationship between voltage and current
is approximated by the equation

W 1
Ip =k, — [(vcs — Vr)Vps — 5"55] [3.1]

The symbol k; is called the process transconductance parameter. It is a constant that
depends on the technology being used and has the units A/V?.

As Vp is increased, the current flow through the transistor increases, as given by equa-
tion 3.1, but only to a certain point. When Vg = Vg — V7, the current reaches its maximum
value. For larger values of Vpg, the transistor is no longer operating in the triode region.
Since the current is at its saturated (maximum) value, we say that the transistor is in the
saturation region. The current is now independent of Vg and is given by the expression

1 W

= —k,—(Vos — Vr)* 3.2
b=k (Ves T) [3.2]
Figure 3.44 shows the shape of the current-voltage relationship in the NMOS transistor

for a fixed value of Vs > V. The figure indicates the point at which the transistor leaves

the triode region and enters the saturation region, which occurs at Vpg = Vgg — V7.
Ip

Triode Saturation

I
> |-
1

0 Vas=Vr v
DS

Figure 3.44 The current-voltage relationship in the NMOS transistor.

3.8 PRACTICAL ASPECTS

121

Assume the values k!, = 60 uA/V:, W/L = 2.0 um/0.5 um, Vs = 0V, Vg = 5V, and
Vr = 1V.If Vp = 2.5V, the current in the transistor is given by equation 3.1 as Ip =~ 1.7
mA. If Vp = 5V, the saturation current is calculated using equation 3.2 as Ip & 2 mA.

Example 3.3

The PMOS Transistor

The behavior of PMOS transistors is the same as for NMOS except that all voltages and
currents are reversed. The source terminal of the PMOS transistor is the terminal with the
higher voltage level (recall that for an NMOS transistor the source terminal is the one with
the lower voltage level), and the threshold voltage required to turn the transistor on has a
negative value. PMOS transistors have the same physical construction as NMOS transistors
except that wherever the NMOS transistor has type n silicon, the PMOS transistor has type
p, and vice versa. For a PMOS transistor the equivalent of Figure 3.43a is to connect
both the source and gate nodes to Vpp, in which case the transistor is turned off. To turn
the PMOS transistor on, equivalent to Figure 3.43b, we would set the gate node to Gnd,
resulting in Vgg = —5 V.

Because the channel is type p silicon, instead of type n, the physical mechanism for
current conduction in PMOS transistors is different from that in NMOS transistors. A
detailed discussion of this issue is beyond the scope of this book, but one implication has to
be mentioned. Equations 3.1 and 3.2 use the parameter k. The corresponding parameter
for a PMOS transistor is kl’,, but current flows more readily in type n silicon than in type p,
with the result that in a typical technology k]’, ~ 0.4 x k. For a PMOS transistor to have
current capacity equal to that of an NMOS transistor, we must use W /L of about two to
three times larger in the PMOS transistor. In logic gates the sizes of NMOS and PMOS
transistors are usually chosen to account for this factor.

3.8.2 MOSFET ON-RESISTANCE

In section 3.1 we considered MOSFETs as ideal switches that have infinite resistance when
turned off and zero resistance when on. The actual resistance in the channel when the
transistor is turned on, referred to as the on-resistance, is given by Vpg /Ip. Using equation
3.1 we can calculate the on-resistance in the triode region, as shown in Example 3.4.

Consider aCMOS inverter in which the input voltage V, is equal to 5 V. The NMOS transistor
is turned on, and the output voltage V; is close to 0 V. Hence Vps for the NMOS transistor
is close to zero and the transistor is operating in the triode region. In the curve in Figure
3.44, the transistor is operating at a point very close to the origin. Although the value of
Vps is small, it is not exactly zero. In the next section we explain that Vpg would typically
be about 0.1 mV. Hence the current I, is not exactly zero; it is defined by equation 3.1. In
this equation we can ignore the term involving Vgs because Vi is small. In this case the

Example 3.4

122

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Vpp Vbp

R
Istat Vi="Vor

Rps

(a) NMOS NOT gate (b) Vy =5V

Figure 3.45 Voltage levels in the NMOS inverter.

on-resistance is approximated by
W
Rps = Vps/Ip =1/ an(VGS - Vr) [3.3]

Assuming the values &k, = 60 /LA/VZ, W/L=2.0pum/0.5um, Vgs =5V,and Vz =1V,
we get Rps ~ 1 kQ.

3.8.3 VOLTAGE LEVELS IN LoGIic GATES

In Figure 3.1 we showed that the logic values are represented by a range of voltage levels.
We should now consider the issue of voltage levels more carefully.

The high and low voltage levels in a logic family are characterized by the operation
of its basic inverter. Figure 3.45a reproduces the circuit in Figure 3.5 for an inverter built
with NMOS technology. When V, = 0V, the NMOS transistor is turned off. No current
flows; hence Vy = 5 V. When V, = Vpp, the NMOS transistor is turned on. To calculate
the value of Vy, we can represent the NMOS transistor by a resistor with the value Rpg, as
illustrated in Figure 3.45b. Then V; is given by the voltage divider

Rps
Rps +R

Vi ="Vop

Example 3.5

Assume that R = 25 k. Using the result from Example 3.4, Rps = 1 k€2, which gives
Ve~ 0.2V.

3.8 PRACTICAL ASPECTS

As indicated in Figure 3.45b, a current I, flows through the NMOS inverter under the
static condition V, = Vpp. This current is given by

Lgat = Vi /Rps = 0.2 V/1kQ = 0.2 mA

This static current has important implications, which we discuss in section 3.8.6.

In modern NMOS circuits, the pull-up device R is implemented using a PMOS transis-
tor. Such circuits are referred to as pseudo-NMOS circuits. They are fully compatible with
CMOS circuits; hence a single chip may contain both CMOS and pseudo-NMOS gates.
Example 3.13 shows the circuit for a pseudo-NMOS inverter and discusses how to calculate
its output voltage levels.

123

The CMOS Inverter

It is customary to use the symbols Vpy and Vi to characterize the voltage levels in
a logic circuit. The meaning of Vyy is the voltage produced when the output is high.
Similarly, Vg, refers to the voltage produced when the output is low. As discussed above,
in the NMOS inverter Vo = Vpp and Vg is about 0.2 V.

Consider again the CMOS inverter in Figure 3.12a. Its output-input voltage relationship
is summarized by the voltage transfer characteristic shown in Figure 3.46. The curve gives
the steady-state value of V; for each value of V.. When V, = 0V, the NMOS transistor
is off. No current flows; hence V; = Vo = Vpp. When V, = Vpp, the PMOS transistor
is off, no current flows, and Vy = V¢, = 0 V. For completeness we should mention that
even when a transistor is turned off, a small current, called the leakage current, may flow
through it. This current has a slight effect on Vg and V. For example, a typical value of
Vor, is 0.1 mV, rather than O V [1].

Figure 3.46 includes labels at the points where the output voltage begins to change from
high to low, and vice versa. The voltage Vj; represents the point where the output voltage
is high and the slope of the curve equals —1. This voltage level is defined as the maximum
input voltage level that the inverter will interpret as low, hence producing a high output.
Similarly, the voltage V;y, which is the other point on the curve where the slope equals —1,
is the minimum input voltage level that the inverter will interpret as high, hence producing
a low output. The parameters Vog, Vor, Vi, and Vjy are important for quantifying the
robustness of a logic family, as discussed below.

3.8.4 NOISE MARGIN

Consider the two NOT gates shown in Figure 3.47a. Let us refer to the gates on the left
and right as N| and NV,, respectively. Electronic circuits are constantly subjected to random
perturbations, called noise, which can alter the output voltage levels produced by the gate
N;. Itis essential that this noise not cause the gate N, to misinterpret a low logic value as
a high one, or vice versa. Consider the case where N produces its low voltage level V.
The presence of noise may alter the voltage level, but as long as it remains less than Vy,
it will be interpreted correctly by N,. The ability to tolerate noise without affecting the

124 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Vou = Vb Slope = -1
ra

1 1

| |

| |

| | |

Vor =0V : :

VIH (VDD_ VT) VDD VX

Figure 3.46 The voltage transfer characteristic for the CMOS inverter.

correct operation of the circuit is known as noise margin. For the low output voltage, we
define the low noise margin as

NMp =V — Vo

A similar situation exists when N; produces its high output voltage Vyp. Any existing
noise in the circuit may alter the voltage level, but it will be interpreted correctly by N, as
long as the voltage is greater than V;y. The high noise margin is defined as

NMy =Vou — Vi

Example 3.6 Fora given technology the voltage transfer characteristic of the basic inverter determines the
levels Vom, Vor, Vi, and V. For CMOS we showed in Figure 3.46 that Vo = Vpp and
Voo = 0 V. By finding the two points where the slope of the voltage transfer characteristic
is equal to —1, it can be shown [1] that Vi, = §(3Vpp + 2Vr) and Vig = §(5Vpp — 2Vr).
For the typical value V; = 0.2 Vpp, this gives

NML = NMH = 0.425 x VDD

3.8 PRACTICAL ASPECTS

Hence the available noise margin depends on the power supply voltage level. For Vpp =5
V, the noise margin is 2.1 V, and for Vpp = 3.3 V, the noise margin is 1.4 V.

125

3.8.5 Dynamic OPERATION OF LoGIic GATES

In Figure 3.47a the node between the two gates is labeled A. Because of the way in which
transistors are constructed in silicon, N, has the effect of contributing to a capacitive load at
node A. Figure 3.43 shows that transistors are constructed by using several layers of different
materials. Wherever two types of material meet or overlap inside the transistor, a capacitor
may be effectively created. This capacitance is called parasitic, or stray, capacitance
because it results as an undesired side effect of transistor fabrication. In Figure 3.47 we
are interested in the capacitance that exists at node A. A number of parasitic capacitors are
attached to this node, some caused by N; and others caused by N,. One significant parasitic
capacitor exists between the input of inverter N, and ground. The value of this capacitor
depends on the sizes of the transistors in N,. Each transistor contributes a gate capacitance,
C, = W x L x C,,. The parameter C,,, called the oxide capacitance, is a constant for
the technology being used and has the units fF/um?. Additional capacitance is caused by
the transistors in N; and by the metal wiring that is attached to node A. It is possible to

(@) A NOT gate driving another NOT gate

Vbp

Va

N |
T

(b) The capacitive load at node A

Figure 3.47 Parasitic capacitance in integrated circuits.

126

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

represent all of the parasitic capacitance by a single equivalent capacitance between node
A and ground [2]. In Figure 3.47b this equivalent capacitance is labeled C.

The existence of stray capacitance has a negative effect on the speed of operation of
logic circuits. Voltage across a capacitor cannot change instantaneously. The time needed to
charge or discharge a capacitor depends on the size of the capacitance C and on the amount
of current through the capacitor. In the circuit of Figure 3.47b, when the PMOS transistor in
N, is turned on, the capacitor is charged to Vpp; it is discharged when the NMOS transistor
is turned on. In each case the current flow I through the involved transistor and the value
of C determine the rate of charging and discharging the capacitor.

Chapter 2 introduced the concept of a timing diagram, and Figure 2.10 shows a timing
diagram in which waveforms have perfectly vertical edges in transition from one logic level
to the other. In real circuits, waveforms do not have this “ideal” shape, but instead have
the appearance of those in Figure 3.48. The figure gives a waveform for the input V, in
Figure 3.47b and shows the resulting waveform at node A. We assume that V, is initially at
the voltage level Vpp and then makes a transition to 0. Once V, reaches a sufficiently low
voltage, N, begins to drive voltage V4 toward Vpp. Because of the parasitic capacitance,
V4 cannot change instantaneously and a waveform with the shape indicated in the figure
results. The time needed for V4 to change from low to high is called the rise time, t., which
is defined as the time elapsed from when V4 is at 10 percent of Vpp until it reaches 90
percent of Vpp. Figure 3.48 also defines the total amount of time needed for the change at
V, to cause a change in V,. This interval is called the propagation delay, often written ¢,,,
of the inverter. It is the time from when V, reaches 50 percent of Vpp until V, reaches the

same level.
Vpp \
x 50% /

o \ 5?
Gnd

Propagation delay Propagation delay
- -
VDD " ™~
90% 90%
Va 50% 50%
Gnd 10% 10%
- -
l, ty

Figure 3.48 Voltage waveforms for logic gates.

3.8 PRACTICAL ASPECTS

After remaining at 0 V for some time, V, then changes back to Vpp, causing N; to
discharge C to Gnd. In this case the transition time at node A pertains to a change from
high to low, which is referred to as the fall time, t¢, from 90 percent of Vpp to 10 percent
of Vpp. As indicated in the figure, there is a corresponding propagation delay for the new
change in V, to affect V4. In a given logic gate, the relative sizes of the PMOS and NMOS
transistors are usually chosen such that ¢, and #; have about the same value.

Equations 3.1 and 3.2 specify the amount of current flow through an NMOS transistor.
Given the value of C in Figure 3.47, it is possible to calculate the propagation delay for a
change in V4 from high to low. For simplicity, assume that V, is initially O V; hence the
PMOS transistor is turned on, and V4 = 5 V. Then V, changes to Vpp at time 0, causing
the PMOS transistor to turn off and the NMOS to turn on. The propagation delay is then
the time required to discharge C through the NMOS transistor to the voltage Vpp/2. When
V, first changes to Vpp, V4 = 5 V; hence the NMOS transistor will have Vg = Vpp and
will be in the saturation region. The current I is given by equation 3.2. Once V, drops
below Vpp — Vr, the NMOS transistor will enter the triode region where Ip is given by
equation 3.1. For our purposes, we can approximate the current flow as V4 changes from
Vop to Vpp/2 by finding the average of the values given by equation 3.2 with Vpg = Vpp
and equation 3.1 with Vpg = Vpp/2. Using the basic expression for the time needed to
charge a capacitor (see Example 3.11), we have

_CAV _ CVpp)2
L N

Substituting for the average value of I as discussed above, yields [1]

. 1IcC 0]
i k,/,%VDD ’

This expression specifies that the speed of the circuit depends both on the value of C and
on the dimensions of the transistor. The delay can be reduced by making C smaller or by
making the ratio W /L larger. The expression shows the propagation time when the output
changes from a high level to a low level. The low-to-high propagation time is given by the
same expression but using kF’, and W /L of the PMOS transistor.

In logic circuits, Lis usually set to the minimum value that is permitted according to the
specifications of the fabrication technology used. The value of W is chosen depending on
the amount of current flow, hence propagation delay, that is desired. Figure 3.49 illustrates
two sizes of transistors. Part (a) depicts a minimum-size transistor, which would be used
in a circuit wherever capacitive loading is small or where speed of operation is not critical.
Figure 3.49b shows a larger transistor, which has the same length as the transistor in part
(a) but a larger width. There is a trade-off involved in choosing transistor sizes, because
a larger transistor takes more space on a chip than a smaller one. Also, increasing W not
only increases the amount of current flow in the transistor but also results in an increase
in the parasitic capacitance (recall that the capacitance C, between the gate terminal and
ground is proportional to W x L), which tends to offset some of the expected improvement
in performance. In logic circuits large transistors are used where high capacitive loads must
be driven and where signal propagation delays must be minimized.

127

128

CHAPTER 3 IMPLEMENTATION TECHNOLOGY

==t

==t

(a) Small transistor (b) Larger transistor

Figure 3.49 Transistor sizes.

Example 3.7

In the circuit in Figure 3.47, assume that C = 70 fF and that W /L = 2.0 um/0.5 um. Also,
k!, = 60 uA/V? and Vpp = 5 V. Using equation 3.4, the high-to-low propagation delay of
the inverter is z, ~ 0.1 ns.

3.8.6 POWER DIsSIPATION IN LoGIic GATES

In an electronic circuit it is important to consider the amount of electrical power consumed
by the transistors. Integrated circuit technology allows fabrication of millions of transistors
on a single chip; hence the amount of power used by an individual transistor must be small.
Power dissipation is an important consideration in all applications of logic circuits, but it
is crucial in situations that involve battery-operated equipment, such as portable computers
and the like.

Consider again the NMOS inverter in Figure 3.45. When V, = 0, no current flows and
hence no power is used. But when V, = 5V, power is consumed because of the current
L. The power consumed in the steady state is given by Ps = I, Vpp. In Example 3.5
we calculated I5;,, = 0.2 mA. The power consumed is then Ps = 0.2 mA x5V = 1.0 mW.
If we assume that a chip contains, say, the equivalent of 10,000 inverters, then the total
power consumption is 10 W! Because of this large power consumption, NMOS-style gates
are used only in special-purpose applications, which we discuss in section 3.8.8.

To distinguish between power consumed during steady-state conditions and power
consumed when signals are changing, it is customary to define two types of power. Static
power is dissipated by the current that flows in the steady state, and dynamic power is
consumed when the current flows because of changes in signal levels. NMOS circuits
consume static power as well as dynamic power, while CMOS circuits consume only
dynamic power.

Consider the CMOS inverter presented in Figure 3.12a. When the input V, is low, no
current flows because the NMOS transistor is off. When V/, is high, the PMOS transistor is

3.8 PRACTICAL ASPECTS

off and again no current flows. Hence no current flows in a CMOS circuit under steady-state
conditions. Current does flow in CMOS circuits, however, for a short time when signals
change from one voltage level to another.

Figure 3.50a depicts the following situation. Assume that V, has been at 0 V for some
time; hence Vy = 5 V. Now let V, change to 5 V. The NMOS ftransistor turns on, and it
pulls V; toward Gnd. Because of the parasitic capacitance C at node f, voltage V; does not
change instantaneously, and current I, flows through the NMOS transistor for a short time
while the capacitor is being discharged. A similar situation occurs when V, changes from
5V to 0, as illustrated in Figure 3.50b. Here the capacitor C initially has O volts across it
and is then charged to 5 V by the PMOS transistor. Current flows from the power supply
through the PMOS transistor while the capacitor is being charged.

The voltage transfer characteristic for the CMOS inverter, shown in Figure 3.46, indi-
cates that a range of input voltage V, exists for which both transistors in the inverter are
turned on. Within this voltage range, specifically Vr < V, < (Vpp — Vr), current flows
from Vpp to Gnd through both transistors. This current is often referred to as the short-
circuit current in the gate. In comparison to the amount of current used to (dis)charge the
capacitor C, the short-circuit current is negligible in most cases.

The power used by a single CMOS inverter is extremely small. Consider again the
situation in Figure 3.50a when V; = Vpp. The amount of energy stored in the capacitor is
equal to CVL%D /2 (see Example 3.12). When the capacitor is discharged to 0V, this stored
energy is dissipated in the NMOS transistor. Similarly, for the situation in Figure 3.505, the
energy CV}2,/2 is dissipated in the PMOS transistor when C is charged up to Vpp. Thus for
each cycle in which the inverter charges and discharges C, the amount of energy dissipated
is equal to CV,%D. Since power is defined as energy used per unit time, the power dissi-
pated in the inverter is the product of the energy used in one discharge/charge cycle times the

Vx—l I I

(&) Current flow when input V, (b) Current flow when input V
changes fromO0Vto5V changes from5Vto 0V

Figure 3.50 Dynamic current flow in CMOS circuits.

129

130

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

number of such cycles per second, f. Hence the dynamic power consumed is
Pp =fCV3p,

In practice, the total amount of dynamic power used in CMOS circuits is significantly lower
than the total power needed in other technologies, such as NMOS. For this reason, virtually
all large integrated circuits fabricated today are based on CMOS technology.

Example 3.8

For a CMOS inverter, assume that C = 70 fF and f = 100 MHz. The dynamic power
consumed by the gate is Pp = 175 uW. If we assume that a chip contains the equivalent of
10,000 inverters and that, on average, 20 percent of the gates change values at any given time,
then the total amount of dynamic power used in the chip is Pp = 0.2 x 10,000 x 175 uW =
0.35W.

3.8.7 PASSING 1s AND 0s THROUGH TRANSISTOR SWITCHES

In Figure 3.4 we showed that NMOS transistors are used as pull-down devices and PMOS
transistors are used as pull-up devices. We now consider using the transistors in the opposite
way, that is, using an NMOS transistor to drive an output high and using a PMOS transistor
to drive an output low.

Figure 3.51a illustrates the case of an NMOS transistor for which both the gate terminal
and one side of the switch are driven to Vpp. Let us assume initially that both V; and node
A are at 0 V, and we then change Vs to 5 V. Node A is the transistor’s source terminal
because it has the lowest voltage. Since Vg = Vpp, the transistor is turned on and drives
node A toward Vpp. When the voltage at node A rises, Vs decreases until the point when
Vs 1s no longer greater than V. At this point the transistor turns off. Thus in the steady
state V4 = Vpp — Vr, which means that an NMOS transistor can only partially pass a high
voltage signal.

(a) NMOS transistor (b) PMOS transistor

Figure 3.51 NMOS and PMOS transistors used in the opposite way
from Figure 3.4.

3.8 PRACTICAL ASPECTS

A similar situation occurs when a PMOS transistor is used to pass a low voltage level,
as depicted in Figure 3.51b. Here assume that initially both V; and node B are at 5 V. Then
we change Vi to 0 V so that the transistor turns on and drives the source node (node B)
toward 0 V. When node B is decreased to V7, the transistor turns off; hence the steady-state
voltage is equal to Vr.

In section 3.1 we said that for an NMOS transistor the substrate (body) terminal is
connected to Gnd and for a PMOS transistor the substrate is connected to Vpp. The voltage
between the source and substrate terminals, Vg, which is called the substrate bias voltage,
is normally equal to O V in a logic circuit. But in Figure 3.51 both the NMOS and PMOS
transistors have Vsg = Vpp. The bias voltage has the effect of increasing the threshold
voltage in the transistor V7 by a factor of about 1.5 or higher [2, 1]. This issue is known as
the body effect.

Consider the logic gate shown in Figure 3.52. In this circuit the Vpp and Gnd con-
nections are reversed from the way in which they were used in previously discussed cir-
cuits. When both V,, and V,, are high, then V; is pulled up to the high output voltage,
Vo = Vpp — 1.5Vy. If Vpp =5V and Vy = 1V, then Vi = 3.5 V. When either V,, or
Vy, is low, then V; is pulled down to the low output voltage, Vo = 1.5V, or about 1.5 V.
As shown by the truth table in the figure, the circuit represents an AND gate. In comparison
to the normal AND gate shown in Figure 3.15, the circuit in Figure 3.52 appears to be better
because it requires fewer transistors. But a drawback of this circuit is that it offers a lower
noise margin because of the poor levels of Vo and V.

Another important weakness of the circuit in Figure 3.52 is that it causes static power
dissipation, unlike a normal CMOS AND gate. Assume that the output of such an AND gate
drives the input of a CMOS inverter. When V; = 3.5V, the NMOS transistor in the inverter
is turned on and the inverter output has a low voltage level. But the PMOS transistor in

—O|

Logic Logic

Vs value | Voltage | o
Vy — Xp X, vV, f
0 0 15V 0
— Vop 0 1 15V 0
V., 1 0 15V 0
11 35V 1

(a) An AND gate circuit (b) Truth table and voltage levels

Figure 3.52 A poor implementation of a CMOS AND gate.

131

132

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

the inverter is not turned off, because its gate-to-source voltage is —1.5 V, which is larger
than V. Static current flows from Vpp to Gnd through the inverter. A similar situation
occurs when the AND gate produces the low output V; = 1.5 V. Here the PMOS transistor
in the inverter is turned on, but the NMOS transistor is not turned off. The AND gate
implementation in Figure 3.52 is not used in practice.

3.8.8 FaAN-IN AND FAN-0OUT IN LoGIC GATES

The fan-in of a logic gate is defined as the number of inputs to the gate. Depending on how
a logic gate is constructed, it may be impractical to increase the number of inputs beyond
a small number. For example, consider the NMOS NAND gate in Figure 3.53, which
has k inputs. We wish to consider the effect of k on the propagation delay 7, through the
gate. Assume that all K NMOS transistors have the same width W and length L. Because
the transistors are connected in series, we can consider them to be equivalent to one long
transistor with length £ x L and width W. Using equation 3.4 (which can be applied to both

Vbp

v —
v, —
v, —

1

«

Figure 3.53 High fan-in NMOS NAND gate.

3.8 PRACTICAL ASPECTS

CMOS and NMOS gates), the propagation delay is given by

_17c
kT Voo

Here C is the equivalent capacitance at the output of the gate, including the parasitic
capacitance contributed by each of the k transistors. The performance of the gate can be
improved somewhat by increasing W for each NMOS transistor. But this change further
increases C and comes at the expense of chip area. Another drawback of the circuit is that
each NMOS transistor has the effect of increasing V., hence reducing the noise margin. It
is practical to build NAND gates in this manner only if the fan-in is small.

As another example of fan-in, Figure 3.54 shows an NMOS k-input NOR gate. In this
case the k NMOS transistors connected in parallel can be viewed as one large transistor
with width £ x W and length L. According to equation 3.4, the propagation delay should
be decreased by the factor k. However, the parallel-connected transistors increase the load
capacitance C at the gate’s output and, more importantly, it is extremely unlikely that all of
the transistors would be turned on when V; is changing from a high to low level. It is thus
practical to build high fan-in NOR gates in NMOS technology. We should note, however,
that in an NMOS gate the low-to-high propagation delay may be slower than the high-to-
low delay as a result of the current-limiting effect of the pull-up device (see Examples 3.13
and 3.14).

High fan-in CMOS logic gates always require either Kk NMOS or k PMOS transistors
in series and are therefore never practical. In CMOS the only reasonable way to construct
a high fan-in gate is to use two or more lower fan-in gates. For example, one way to realize
a six-input AND gate is as 2 three-input AND gates that connect to a two-input AND gate.
It is possible to build a six-input CMOS AND gate using fewer transistors than needed with
this approach, but we leave this as an exercise for the reader (see problem 3.4).

r=-"
L =

oo
L

Vi

Figure 3.54 High fan-in NMOS NOR gate.

133

134 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Fan-out

Figure 3.48 illustrated timing delays for one NOT gate driving another. In real circuits
each logic gate may be required to drive several others. The number of other gates that a
specific gate drives is called its fan-out. An example of fan-out is depicted in Figure 3.554,
which shows an inverter N; that drives the inputs of n other inverters. Each of the other
inverters contributes to the total capacitive loading on node f. In part (b) of the figure,
the n inverters are represented by one large capacitor C,. For simplicity, assume that each
inverter contributes a capacitance C and that C, = n x C. Equation 3.4 shows that the
propagation delay increases in direct proportion to n.

f] To inputs of
X h
| n other inverters

(a) Inverter that drives n other inverters
V .
f To inputs of
X -
n other inverters
—— Cn

(b) Equivalent circuit for timing purposes

Vf forn=1

Vop ‘/
&foorn=4

Gnd -

0 Time

(c) Propagation times for different values of n

Figure 3.55 The effect of fan-out on propagation delay.

3.8 PRACTICAL ASPECTS

Figure 3.55¢ illustrates how n affects the propagation delay. It assumes that a change
from logic value 1 to O on signal x occurs at time 0. One curve represents the case where
n = 1, and the other curve corresponds to n = 4. Using the parameters from Example 3.7,
when n = 1, we have 7, = 0.1 ns. Then forn = 4, 7, ~ 0.4 ns. It is possible to reduce ,
by increasing the W /L ratios of the transistors in N;.

Buffers

In circuits in which a logic gate has to drive a large capacitive load, buffers are often
used to improve performance. A buffer is a logic gate with one input, x, and one output,
f, which produces f = x. The simplest implementation of a buffer uses two inverters, as
shown in Figure 3.56a. Buffers can be created with different amounts of drive capability,
depending on the sizes of the transistors (see Figure 3.49). In general, because they are
used for driving higher-than-normal capacitive loads, buffers have transistors that are larger
than those in typical logic gates. The graphical symbol for a noninverting buffer is given
in Figure 3.56b.

Another type of buffer is the inverting buffer. It produces the same output as an inverter,
f =X, but is built with relatively large transistors. The graphical symbol for the inverting
buffer is the same as for the NOT gate; an inverting buffer is just a NOT gate that is capable
of driving large capacitive loads. In Figure 3.55 for large values of n an inverting buffer
could be used for the inverter labeled N;.

In addition to their use for improving the speed performance of circuits, buffers are
also used when high current flow is needed to drive external devices. Buffers can handle

Vpp

!

N)

Vy]» Ve

T]
L

(a) Implementation of a buffer

L

X ll> f
(b) Graphical symbol

Figure 3.56 A noninverting buffer.

135

136

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

relatively large amounts of current flow because they are built with large transistors. A
common example of this use of buffers is to control a light-emitting diode (LED). We
describe an example of this application of buffers in section 7.14.3.

In general, fan-out, capacitive loading, and current flow are important issues that the
designer of a digital circuit must consider carefully. In practice, the decision as to whether
or not buffers are needed in a circuit is made with the aid of CAD tools.

Tri-state Buffers

In section 3.6.2 we mentioned that a type of buffer called a tri-state buffer is included
in some standard chips and in PLDs. A tri-state buffer has one input, x, one output, f, and a
control input, called enable, e. The graphical symbol for a tri-state buffer is given in Figure
3.57a. The enable input is used to determine whether or not the tri-state buffer produces
an output signal, as illustrated in Figure 3.57b. When e = 0, the buffer is completely
disconnected from the output f. When e = 1, the buffer drives the value of x onto f,
causing f = x. This behavior is described in truth-table form in part (¢) of the figure. For
the two rows of the table where e = 0, the output is denoted by the logic value Z, which
is called the high-impedance state. The name tri-state derives from the fact that there are
two normal states for a logic signal, 0 and 1, and Z represents a third state that produces no
output signal. Figure 3.57d shows a possible implementation of the tri-state buffer.

Figure 3.58 shows several types of tri-state buffers. The buffer in part (b) has the same
behavior as the buffer in part (a), except that when e = 1, it produces f = x. Part (¢) of
the figure gives a tri-state buffer for which the enable signal has the opposite behavior; that
is, when e = 0, f = x, and when e = 1, f = Z. The term often used to describe this type

e=0
e X >—</ o— f
X I\L f
l/ e=1
>
(a) A tri-state buffer (b) Equivalent circuit

e X f e DO
0 0 Z
0 1 VA
X — f
1 0 0
1 1 1
(c) Truth table (d) Implementation

Figure 3.57 Tri-state buffer.

3.8 PRACTICAL ASPECTS

e e

X & f X f
(@) (b)
e e

X I/I\ f X f
(c) (d)

Figure 3.58 Four types of tri-state buffers.

of behavior is to say that the enable is active low. The buffer in Figure 3.58d also features
an active-low enable, and it produces f = X when e = 0.

As a small example of how tri-state buffers can be used, consider the circuit in Figure
3.59. In this circuit the output f is equal to either x; or x,, depending on the value of s.
Whens = 0,f = x;,and whens = 1, f = x;. Circuits of this kind, which choose one of the
inputs and reproduce the signal on this input at the output terminal, are called multiplexer
circuits. A circuit that implements the multiplexer using AND and OR gates is shown in
Figure 2.26. We will present another way of building multiplexer circuits in section 3.9.2
and will discuss them in detail in Chapter 6.

In the circuit of Figure 3.59, the outputs of the tri-state buffers are wired together. This
connection is possible because the control input s is connected so that one of the two buffers
is guaranteed to be in the high-impedance state. The x; buffer is active only when s = 0,
and the x; buffer is active only when s = 1. It would be disastrous to allow both buffers
to be active at the same time. Doing so would create a short circuit between Vpp and Gnd
as soon as the two buffers produce different values. For example, assume that x; = 1 and
x» = 0. The x; buffer produces the output Vpp, and the x, buffer produces Gnd. A short
circuit is formed between Vpp and Gnd, through the transistors in the tri-state buffers. The
amount of current that flows through such a short circuit is usually sufficient to destroy the
circuit.

X — f

X2

Figure 3.59 An application of tri-state buffers.

137

138

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

The kind of wired connection used for the tri-state buffers is not possible with ordinary
logic gates, because their outputs are always active; hence a short circuit would occur. As
we already know, for normal logic circuits the equivalent result of the wired connection is
achieved by using an OR gate to combine signals, as is done in the sum-of-products form.

3.9 TRANSMISSION GATES

In section 3.8.7 we showed that an NMOS transistor passes 0 well and 1 poorly, while a
PMOS transistor passes 1 well and O poorly. It is possible to combine an NMOS and a
PMOS transistor into a single switch that is capable of driving its output terminal either to
a low or high voltage equally well. Figure 3.60a gives the circuit for a transmission gate.
As indicated in parts (b) and (c) of the figure, it acts as a switch that connects x to f. Switch
control is provided by the select input s and its complement 5. The switch is turned on by
setting V; = 5 Vand V5 = 0. When V, is 0, the NMOS transistor will be turned on (because
Vgs = Vs — V. =5V)and V; will be 0. On the other hand, when V, is 5V, then the PMOS
transistor will be on (Vgg = V5 — V, = —5 V) and V; will be 5 V. A graphical symbol for
the transmission gate is given in Figure 3.60d.

Transmission gates can be used in a variety of applications. We will show next how
they lead to efficient implementations of Exclusive OR (XOR) logic gates and multiplexer
circuits.

— 0 Z
1 X
S
(a) Circuit (b) Truth table

s =0
X ——d o— f=7 K}

s =1
X —o—o0—— f=x
S

(c) Equivalent circuit (d) Graphical symbol

Figure 3.60 A transmission gate.

3.9 TRANSMISSION GATES

3.9.1 ExcLUSIVE-OR GATES

So far we have encountered AND, OR, NOT, NAND, and NOR gates as the basic elements
from which logic circuits can be constructed. There is another basic element that is very
useful in practice, particularly for building circuits that perform arithmetic operations, as
we will see in Chapter 5. This element realizes the Exclusive-OR function defined in Figure
3.61a. The truth table for this function is similar to the OR function except that f = O when
both inputs are 1. Because of this similarity, the function is called Exclusive-OR, which is
commonly abbreviated as XOR. The graphical symbol for a gate that implements XOR is
given in part (b) of the figure.

X, X, |f=x]6-)x2

0 0 0
01 1 .
10 1 ! - X @
11 0 xz:)D = nem
(a) Truth table (b) Graphical symbol
f >0
)
(c) Sum-of-products implementation
|
)

—— = x,®x,

(d) CMOS implementation

Figure 3.61 Exclusive-OR gate.

139

140

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

X1

X

— f

Figure 3.62 A 2-to-1 multiplexer built using transmission
gates.

The XOR operation is usually denoted with the @ symbol. It can be realized in the
sum-of-products form as

X1 D x2 = X1x2 + XX

which leads to the circuit in Figure 3.61c. We know from section 3.3 that each AND and OR
gate requires six transistors, while a NOT gate needs two transistors. Hence 22 transistors
are required to implement this circuit in CMOS technology. It is possible to greatly reduce
the number of transistors needed by making use of transmission gates. Figure 3.61d gives
a circuit for an XOR gate that uses two transmission gates and two inverters. The output f
is set to the value of x, when x; = 0 by the top transmission gate. The bottom transmission
gate sets f to x, when x; = 1. The reader can verify that this circuit properly implements
the XOR function. We show how such circuits are derived in Chapter 6.

3.9.2 MULTIPLEXER CIRCUIT

In Figure 3.59 we showed how a multiplexer can be constructed with tri-state buffers. A
similar structure can be used to realize a multiplexer with transmission gates, as indicated
in Figure 3.62. The select input s is used to choose whether the output f should have the
value of input x; or x,. If s = 0, then f = x;; if s = 1, then f = x,.

3.10 IMPLEMENTATION DETAILS FOR SPLDs, CPLDs,
AND FPGASs

We introduced PLDs in section 3.6. In the chip diagrams shown in that section, the pro-
grammable switches are represented using the symbol X. We now show how these switches
are implemented using transistors.

In commercial SPLDs two main technologies are used to manufacture the programmable
switches. The oldest technology is based on using metal-alloy fuses as programmable links.
In this technology the PLAs and PALs are manufactured so that each pair of horizontal and

3.10 IMPLEMENTATION DETAILS FOR SPLDs, CPLDs, anND FPGASs

vertical wires that cross is connected by a small metal fuse. When the chip is programmed,
for every connection that is not wanted in the circuit being implemented, the associated
fuse is melted. The programming process is not reversible, because the melted fuses are
destroyed. We will not elaborate on this technology, because it has mostly been replaced
by a newer, better method.

In currently produced PLAs and PALs, programmable switches are implemented using
a special type of programmable transistor. Because CPLDs comprise PAL-like blocks, the
technology used in SPLDs is also applicable to CPLDs. We will illustrate the main ideas
by first describing PLAs. For a PLA to be useful for implementing a wide range of logic
functions, it should support both functions of only a few variables and functions of many
variables. In section 3.8.8 we discussed the issue of fan-in of logic gates. We showed that
when the fan-in is high, the best type of gate to use is the NMOS NOR gate. Hence PLAs
are usually based on this type of gate.

As a small example of PLA implementation, consider the circuit in Figure 3.63. The
horizontal wire labeled S; is the output of an NMOS NOR gate with the inputs x, and
X3. Thus §; = x2 + x3. Similarly, S, and S3 are the outputs of NOR gates that produce

Y Y NOR plane
Vop Vbp Vop
3 . 3 %
L L
. = s,
[L

IrVlel H |7 ,_li _g|_|_<
. = = S,

[[L

CieE A

) - - f

NOR plane fy 2

Figure 3.63 An example of a NOR-NOR PLA.

141

142

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Sy = x1 +x3 and S3 = x; +X» + x3. The three NOR gates that produce S;, S», and S;
are arranged in a regular structure that is efficient to create on an integrated circuit. This
structure is called a NOR plane. The NOR plane is extended to larger sizes by adding
columns for additional inputs and adding rows for more NOR gates.

The signals S, S», and S5 serve as inputs to a second NOR plane. This NOR plane is
turned 90 degrees clockwise with respect to the first NOR plane to make the diagram easier
to draw. The NOR gate that produces the output f; has the inputs S; and S,. Thus

fi=81+8 = +x)+ 1 +x3)
Using DeMorgan’s theorem, this expression is equivalent to the product-of-sums expression
fi = 8182 = (2 + %3)(x1 + x3)
Similarly, the NOR gate with output f; has inputs S; and S3. Therefore,

f=81+8 =2 +x3) + (x1 + X2 +x3)
which is equivalent to
fr =818 = (x2 +X3)(x1 + X2 + x3)

The style of PLA illustrated in Figure 3.63 is called a NOR-NOR PLA. Alternative
implementations also exist, but because of its simplicity, the NOR-NOR style is the most
popular choice. The reader should note that the PLA in Figure 3.63 is not programmable—
with the transistors connected as shown, it realizes only the two specific logic functions f;
and f>. But the NOR-NOR structure can be used in a programmable version of the PLA, as
explained below.

Strictly speaking, the term PLA should be used only for the fixed type of PLA de-
picted in Figure 3.63. The proper technical term for a programmable type of PLA is
field-programmable logic array (FPLA). However, it is common usage to omit the F. Fig-
ure 3.64a shows a programmable version of a NOR plane. It has » inputs, xi, ..., x,,
and k outputs, Sy, ..., Sx. At each crossing point of a horizontal and vertical wire there
exists a programmable switch. The switch comprises two transistors connected in series, an
NMOS transistor and an electrically erasable programmable read-only memory (EEPROM)
transistor.

The programmable switch is based on the behavior of the EEPROM transistor. Elec-
tronics textbooks, such as [1, 2], give detailed explanations of how EEPROM transistors
operate. Here we will provide only a brief description. A programmable switch is depicted
in Figure 3.64b, and the structure of the EEPROM transistor is given in Figure 3.64¢. The
EEPROM transistor has the same general appearance as the NMOS transistor (see Figure
3.43) with one major difference. The EEPROM transistor has two gates: the normal gate
that an NMOS transistor has and a second floating gate. The floating gate is so named be-
cause it is surrounded by insulating glass and is not connected to any part of the transistor.
When the transistor is in the original unprogrammed state, the floating gate has no effect
on the transistor’s operation and it works as a normal NMOS transistor. During normal use
of the PLA, the voltage on the floating gate V, is set to Vpp by circuitry not shown in the
figure, and the EEPROM transistor is turned on.

Programming of the EEPROM transistor is accomplished by turning on the transistor
with a higher-than-normal voltage level (typically, V, = 12 V), which causes a large amount

3.10 IMPLEMENTATION DETAILS FOR SPLDs, CPLDs, anND FPGASs

xl)C2 xn
Vbp
o 00
2
L -4)) S
wl L L[L oL
- . — — — — — —
2
) S
. I I I [| [~
: —1 —1 — — — —1
Vbb
ES
L -4)) S
| | | [" | [~
(a) Programmable NOR-plane
4| Ve
T e
) ++++|zzc
+++++
= ++++++++++++H++++
(b) A programmable switch (c) EEPROM transistor

Figure 3.64 Using EEPROM transistors fo create a programmable NOR plane.

of current to flow through the transistor’s channel. Figure 3.64c¢ shows that a part of the
floating gate extends downward so that it is very close to the top surface of the channel.
A high current flowing through the channel causes an effect, known as Fowler-Nordheim
tunneling, in which some of the electrons in the channel “tunnel” through the insulating
glass at its thinnest point and become trapped under the floating gate. After the programming

143

144

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

process is completed, the trapped electrons repel other electrons from entering the channel.
When the voltage V, = 5 V is applied to the EEPROM transistor, which would normally
cause it to turn on, the trapped electrons keep the transistor turned off. Hence in the NOR
plane in Figure 3.64a, programming is used to “disconnect” inputs from the NOR gates.
For the inputs that should be connected to each NOR gate, the corresponding EEPROM
transistors are left in the unprogrammed state.

Once an EEPROM transistor is programmed, it retains the programmed state perma-
nently. However, the programming process can be reversed. This step is called erasing,
and it is done using voltages that are of the opposite polarity to those used for programming.
In this case, the applied voltage causes the electrons that are trapped under the floating gate
to tunnel back to the channel. The EEPROM transistor returns to its original state and again
acts like a normal NMOS transistor.

For completeness, we should also mention another technology that is similar to EEP-
ROM, called erasable PROM (EPROM). This type of transistor, which was actually created
as the predecessor of EEPROM, is programmed in a similar fashion to EEPROM. However,
erasing is done differently: to erase an EPROM transistor, it must be exposed to light energy
of specific wavelengths. To facilitate this process, chips based on EPROM technology are
housed in packages with a clear glass window through which the chip is visible. To erase
a chip, it is placed under an ultraviolet light source for several minutes. Because erasure
of EPROM transistors is more awkward than the electrical process used to erase EEPROM
transistors, EPROM technology has essentially been replaced by EEPROM technology in
practice.

A complete NOR-NOR PLA using EEPROM technology, with four inputs, six sum
terms in the first NOR plane, and two outputs, is depicted in Figure 3.65. Each pro-
grammable switch that is programmed to the off state is shown as X in black, and each
switch that is left unprogrammed is shown in blue. With the programming states shown in
the figure, the PLA realizes the logic functions fj = (x; + x3)(x; + X2)(X; + x» + x3) and
o= 1 +x3)F +x2) (1 +X2).

Rather than implementing logic functions in product-of-sums form, a PLA can also
be used to realize the sum-of-products form. For sum-of-products we need to implement
AND gates in the first NOR plane of the PLA. If we first complement the inputs to the
NOR plane, then according to DeMorgan’s theorem, this is equivalent to creating an AND
plane. We can generate the complements at no cost in the PLA because each input is already
provided in both true and complemented forms. An example that illustrates implementation
of the sum-of-products form is given in Figure 3.66. The outputs from the first NOR plane
are labeled Py, ..., Pg to reflect our interpretation of them as product terms. The signal
P, is programmed to realize X; + X, = xjx,. Similarly, P, = x;x3, P3 = XX>x3, and
P4 = X1xx3. Having generated the desired product terms, we now need to OR them. This
operation can be accomplished by complementing the outputs of the second NOR plane.
Figure 3.66 includes NOT gates for this purpose. The states indicated for the programmable
switches in the OR plane (the second NOR plane) in the figure yield the following outputs:
Ji = P1+ Py + Py = x1x2 + X1X3 + X1X2x3, and fo = Py + P4 = x1x2 + X1X2X3.

The concepts described above for PLAs can also be used in PALs. Figure 3.67 shows a
PAL with four inputs and two outputs. Letus assume that the first NOR plane is programmed
to realize product terms in the manner described above. Notice in the figure that the product

3.10 IMPLEMENTATION DETAILS FOR SPLDs, CPLDs, anND FPGASs

X1 Xy X3 Xyg

NOR plane

Vbp
i
) r—- =1 }: Sl
AN XXX XK) o
e B o) S e 3
R e e e I e
o e e I
r==-—n" }: 86
NOR plane ?
fy fy

Figure 3.65 Programmable version of the NOR-NOR PLA.

terms are hardwired in groups of three to OR gates that produce the outputs of the PAL.
As we illustrated in Figure 3.29, the PAL may also contain extra circuitry between the OR
gates and the output pins, which is not shown in Figure 3.67. The PAL is programmed
to realize the same logic functions, f; and f>, that were generated in the PLA in Figure
3.66. Observe that the product term x;x; is implemented twice in the PAL, on both P; and
P4. Duplication is necessary because in a PAL product terms cannot be shared by multiple
outputs, as they can be in a PLA. Another detail to observe in Figure 3.67 is that although
the function f, requires only two product terms, each OR gate is hardwired to three product
terms. The extra product term P must be set to logic value 0, so that it has no effect. This
is accomplished by programming Pg so that it produces the product of an input and that
input’s complement, which always results in 0. In the figure, P¢ = x;X; = 0, but any other
input could also be used for this purpose.

The PAL-like blocks contained in CPLDs are usually implemented using the techniques
discussed in this section. In a typical CPLD, the AND plane is built using NMOS NOR
gates, with appropriate complementing of the inputs. The OR plane is hardwired as it is in

145

146

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

X1 Xy X3 Xy

NOR plane

-

vvlvivivle

r——,1 P5
r—=-n1 P6

NOR plane

Figure 3.66 A NOR-NOR PLA used for sum-of-products.

a PAL, rather than being fully programmable as in a PLA. However, some flexibility exists
in the number of product terms that feed each OR gate. This flexibility is accomplished by
using a programmable circuit that can allocate the product terms to whichever OR gates
the user desires. An example of this type of flexibility, provided in a commercial CPLD, is
given in Appendix E.

3.10.1 IMPLEMENTATION IN FPGAS

FPGAs do not use EEPROM technology to implement the programmable switches. Instead,
the programming information is stored in memory cells, called static random access memory
(SRAM) cells. The operation of this type of storage cell is described in detail in section
10.1.3. For now it is sufficient to know that each cell can store either a logic O or 1, and it
provides this stored value as an output. An SRAM cell is used for each truth-table value

-

Figure 3.67

3.10 IMPLEMENTATION DETAILS FOR SPLDs, CPLDs, anND FPGASs

X1 Xy X3 Xy

D

SO

AAA M —/

D

D
'_"rh_h_ﬁ'ﬁﬁw SRR Do Ps Y\ f,

AAA M —/
o D

NOR plane

PAL programmed fo implement the functions in Figure 3.66.

stored in a LUT. SRAM cells are also used to configure the interconnection wires in an

FPGA.

Figure 3.68 depicts a small section of the FPGA from Figure 3.39. The logic block
shown produces the output fi, which is driven onto the horizontal wire drawn in blue. This
wire can be connected to some of the vertical wires that it crosses, using programmable

0
_xlof V/.l
1. 0!
21 v
A

SRAM SRAM SRAM

(to other wires)

Figure 3.68 Pass-transistor switches in FPGAs.

147

148

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

switches. Each switch is implemented using an NMOS transistor, with its gate terminal
controlled by an SRAM cell. Such a switch is known as a pass-transistor switch. If a
0 is stored in an SRAM cell, then the associated NMOS transistor is turned off. But if
a 1 is stored in the SRAM cell, as shown for the switch drawn in blue, then the NMOS
transistor is turned on. This switch forms a connection between the two wires attached to its
source and drain terminals. The number of switches that are provided in the FPGA depends
on the specific chip architecture. In some FPGAs some of the switches are implemented
using tri-state buffers, instead of pass transistors. Examples of commercial FPGA chips are
presented in Appendix E.

In section 3.8.7 we showed that an NMOS transistor can only partially pass a high logic
value. Hence in Figure 3.68 if V;, is ahigh voltage level, then V4 is only partially high. Using
the values from section 3.8.7, if V, = 5V, then V4 = 3.5 V. As we explained in section
3.8.7, this degraded voltage level has the result of causing static power to be consumed
(see Example 3.15). One solution to this problem [1] is illustrated in Figure 3.69. We
assume that the signal V4 passes through another pass-transistor switch before reaching its
destination at another logic block. The signal Vy has the same value as V4 because the
threshold voltage drop occurs only when passing through the first pass-transistor switch.
To restore the level of Vp, it is buffered with an inverter. A PMOS transistor is connected
between the input of the inverter and Vpp, and that transistor is controlled by the inverter’s
output. The PMOS transistor has no effect on the inverter’s output voltage level when
Vp = 0 V. But when Vg = 3.5V, then the inverter output is low, which turns on the PMOS
transistor. This transistor quickly restores Vj to the proper level of Vpp, thus preventing
current from flowing in the steady state. Instead of using this pull-up transistor solution,
another possible approach is to alter the threshold voltage of the PMOS transistor (during
the integrated circuit manufacturing process) in the inverter in Figure 3.69, such that the
magnitude of its threshold voltage is large enough to keep the transistor turned off when
Vg = 3.5 V. In commercial FPGAs both of these solutions are used in different chips.

An alternative to using a single NMOS transistor is to use a transmission gate, de-
scribed in section 3.9, for each switch. While this solves the voltage-level problem, it has
two drawbacks. First, having bothan NMOS and PMOS transistor in the switch increases the

— B
vy : DC To logic block

Figure 3.69 Restoring a high voltage level.

3.12 EXAMPLES OF SOLVED PROBLEMS

capacitive loading on the interconnection wires, which increases the propagation delays
and power consumption. Second, the transmission gate takes more chip area than does a
single NMOS transistor. For these reasons, commercial FPGA chips do not currently use
transmission-gate switches.

149

3.11 CoONCLUDING REMARKS

We have described the most important concepts that are needed to understand how logic
gates are built using transistors. Our discussions of transistor fabrication, voltage levels,
propagation delays, power dissipation, and the like are meant to give the reader an appre-
ciation of the practical issues that have to be considered when designing and using logic
circuits.

We have introduced several types of integrated circuit chips. Each type of chip is
appropriate for specific types of applications. The standard chips, such as the 7400 series,
contain only a few simple gates and are rarely used today. Exceptions to this are the buffer
chips, which are employed in digital circuits that must drive large capacitive loads at high
speeds. The various types of PLDs are widely used in many types of applications. Simple
PLDs, like PLAs and PALs, are appropriate for implementation of small logic circuits.
The SPLDs offer low cost and high speed. CPLDs can be used for the same applications
as SPLDs, but CPLDs are also well suited for implementation of larger circuits, up to
about 10,000 to 20,000 gates. Many of the applications that can be targeted to CPLDs can
alternatively be realized with FPGAs. Which of these two types of chips are used in a
specific design situation depends on many factors. Following the trend of putting as much
circuitry as possible into a single chip, CPLDs and FPGAs are much more widely used than
SPLDs. Most digital designs created in the industry today contain some type of PLD.

The gate-array, standard-cell, and custom-chip technologies are used in cases where
PLDs are not appropriate. Typical applications are those that entail very large circuits,
require extremely high speed-of-operation, need low power consumption, and where the
designed product is expected to sell in large volume.

The next chapter examines the issue of optimization of logic functions. Some of the
techniques discussed are appropriate for use in the synthesis of logic circuits regardless
of what type of technology is used for implementation. Other techniques are suitable
for synthesizing circuits so that they can be implemented in chips with specific types of
resources. We will show that when synthesizing a logic function to create a circuit, the
optimization methods used depend, at least in part, on which type of chip is being used.

3.12 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

150

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

X —

Xy — f
x4 B —

Xs

Figure 3.70 The AQI cell for Example 3.9.

Example 3.9

Problem: We introduced standard cell technology in section 3.7. In this technology, circuits
are built by interconnecting building-block cells that implement simple functions, like basic
logic gates. A commonly used type of standard cell are the and-or-invert (AOI) cells, which
can be efficiently built as CMOS complex gates. Consider the AOI cell shown in Figure
3.70. This cell implements the function f = x;x; + x3x4 + x5. Derive the CMOS complex
gate that implements this cell.

Solution: Applying Demorgan’s theorem in two steps gives
Jf =X1x2 - X3X5 - X5
= (X1 +x2) - (X3 + X4) - Xs
Since all input variables are complemented in this expression, we can directly derive
the pull-up network as having parallel-connected PMOS transistors controlled by x; and
X», in series with parallel-connected transistors controlled by x3 and x4, in series with a

transistor controlled by xs. This circuit, along with the corresponding pull-down network,
is shown in Figure 3.71.

Example 3.10

Problem: For the CMOS complex gate in Figure 3.71, determine the sizes of transistors
that should be used such that the speed performance of this gate is similar to that of an
inverter.

Solution: Recall from section 3.8.5 that a transistor with length L and width W has a drive
strength proportional to the ratio W /L. Also recall that when transistors are connected in
parallel their widths are effectively added, leading to an increase in drive strength. Similarly,
when transistors are connected in series, their lengths are added, leading to a decrease in
drive strength. Let us assume that all NMOS and PMOS transistors have the same length,
L, = L, = L. In Figure 3.71 the NMOS transistor connected to input V., can have the
same width as in an inverter, W,. But the worst-case path through the pull-down network
in this circuit involves two NMOS transistors in series. For these NMOS transistors, which
are connected to inputs Vy,, ..., Vy,, we should make the widths equal to 2 x W,. For the
pull-up network, the worst-case path involves three transistors in series. Since, as we said
in section 3.8.1, PMOS transistors have about half the drive strength of NMOS transistors,
we should make the effective width of the PMOS transistors

W, =3 x W, x2=6W,

3.12 EXAMPLES OF SOLVED PROBLEMS 151

Vpp

Q

—_—
|

%)

I I

BN m

1
]

1

Figure 3.71 Circuit for Examples 3.9 and 3.10.

Problem: In section 3.8.5, we said that the time needed to charge a capacitor is given by Example 3.11
o CAV
P

Derive this expression.

Solution: As we stated in section 3.8.5, the voltage across a capacitor cannot change

instantaneously. In Figure 3.50a, as V; is charged from 0 volts toward Vpp, the voltage

changes according to the equation

1 o0
Vi = E/i(t)dt
0

In this expression, the independent variable 7 is time, and i(¢) represents the instantaneous
current flow through the capacitor at time ¢. Differentiating both sides of this expression

152 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

with respect to time, and rearranging gives

. de
i(t) = o
For the case where [is constant, we have
I AV
Cc At
Therefore,
CAV
A=h="

Example 3.12 Problem: In our discussion of Figure 3.50a, in section 3.8.6, we said that a capacitor, C,
that has been charged to the voltage V; = Vpp, stores an amount of energy equal to C V2,/2.
Derive this expression.

Solution: As shown in Example 3.11, the current flow through a charging capacitor, C, is
related to the rate of change of voltage across the capacitor, according to

, vy
1) =C—
i(1) o

The instantaneous power dissipated in the capacitor is
P=it)xV;

Since energy is defined as the power used over a time period, we can calculate the energy,
Ec, stored in the capacitor as V; changes from 0 to Vpp by integrating the instantaneous
power over time, as follows

oo
Ec :/i(t)vfdt
0

Substituting the above expression for i(¢) gives

=c [vav,
0
1
= ECVL%D

Example 3.13 Problem: In the original NMOS technology, the pull-up device was an n-channel MOSFET.
But most integrated circuits fabricated today use CMOS technology. Hence it is convenient
to implement the pull-up resistor using a PMOS transistor, as shown in Figure 3.72. Such

3.12 EXAMPLES OF SOLVED PROBLEMS

Vbp

=
=

Figure 3.72 The pseudo-NMOS inverter.

a circuit is referred to as a pseudo-NMOS circuit. The pull-up device is called a “weak”
PMOS transistor because it has a small W /L ratio.

When V; = Vpp, V; has a low value. The NMOS transistor is operating in the triode
region, while the PMOS transistor limits the current flow because it is operating in the
saturation region. The current through the NMOS and PMOS transistors has to be equal
and is given by equations 3.1 and 3.2. Show that the low-output voltage, V; = V is given

by
kp
Vi=Wpp—=Vr)|1- l_k_

where k, and k,, called the gain factors, depend on the sizes of the PMOS and NMOS
transistors, respectively. They are defined by k, = kl/, W,/L, and k, = k, W, /L,.

Solution: For simplicity we will assume that the magnitude of the threshold voltages for
both the NMOS and PMOS transistors are equal, so that

Vi =Vry = =Vrp

The PMOS transistor is operating in the saturation region, so the current flowing through it
is given by

1,W,
Ip= -k, —*£

= —Vop — Vrp)?
2”L,,(pp — Vrp)

1 2
= Ekp(_VDD - Vrp)

1
= Ekp(VDD - Vp)?

Similarly, the NMOS transistor is operating in the triode region, and its current flow is
defined by

153

154 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

W, 1
Ip = k,;L—n [(VX — ViV =3 fz}

1
=k, [(vx — Ven)Vy — Evfz}

1
= ky [(VDD —Vr)Vy - Evfz}

Since there is only one path for current to flow, we can equate the currents flowing through
the NMOS and PMOS transistors and solve for the voltage V.

ky(Vop — Vr)? = 2k, [(VDD - V)V — %szi|
ky(Vop — Vr)* = 2ka(Vop — Vi) Vs + k, V7 =0
This quadratic equation can be solved using the standard formula, with the parameters
a=ky, b=~2ky(Vpp — V1), ¢ = ky(Vpp — V1)
which gives

—b b2 c
2a 4a’> a

k
= Vpp—Vr)=* \/(VDD - Vr)? - k_p(VDD - Vr)?

n
kP
= (Voo = Vp) [1, [1-F

Only one of these two solutions is valid, because we started with the assumption that the
NMOS transistor is in the triode region while the PMOS is in the saturation region. Thus

kp
Vi=Wpp—Vr)|1—- l_k_

Example 3.14 Problem: For the circuit in Figure 3.72, assume the values k, = 60 UA/V2, k;, = 0.4k,
W,/L, = 2.0 um/0.5 um, W,/L, = 0.5 um/0.5 um, Vpp =5V, and V7 = 1 V. When
V. = Vpp, calculate the following:

(a) The static current, Iy,,.

(b) The on-resistance of the NMOS transistor.

(©) Vor.

(d) The static power dissipated in the inverter.

(e) The on-resistance of the PMOS transistor.

3.12 EXAMPLES OF SOLVED PROBLEMS

(f) Assume that the inverter is used to drive a capacitive load of 70 fF. Using equation 3.4,
calculate the low-to-high and high-to-low propagation delays.

Solution: (a) The PMOS transistor is saturated, therefore

1 /WP 2
Lt = Eka(VDD - Vr)

— HA 2 _
=12 2><1><(5V 1V)" =192 uA
(b) Using equation 3.3,

W
Rps =1/ |:knL_(VGS - VT):|

n

mA
=1/ [0.060? X 4 x (5V—1V)] = 1.04kQ

(c) Using the expression derived in Example 3.13 we have

W A
ky = k=2 =24 E2
L, v
W, A
oy = k=1 =240 L2
L, v

Vo=V =GBV—-1V)|1—,/1 24
oL= "= 240

=021V

(d)
Pp = Iy X Vpp
— 192 4A x 5V = 960 uW ~ 1 mW

(e)
Rspp = Vsp/Isp
= (VDD - Vf)/lsmt
= (5V —0.21V)/0.192 mA = 24.9kQ

(f) The low-to-high propagation delay is

. _lLic
i = T
ky 72 Vo

1.7 x 70 fF

— —0.99ns
24@—2‘x1xsv

155

156 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

The high-to-low propagation delay is

Lo _Lic
PHL — k,/,‘zl_:VDD
1.7 x 70 fF

=— - —0.lns
60/;—’;‘x4x5v

Example 3.15 Problem: In Figure 3.69 we showed a solution to the static power dissipation problem when
NMOS pass transistors are used. Assume that the PMOS pull-up transistor is removed
from this circuit. Assume the parameters kK, = 60 uA/V?, k, = 0.5 x k,, W,/L, =
2.0 um/0.5 pm, W, /L, = 4.0 um/0.5 um, Vpp = 5V, and Vr = 1 V. For Vp = 3.5V,
calculate the following:

(a) The static current Iy,,.

(b) The voltage V; at the output of the inverter.

(c) The static power dissipation in the inverter.

(d) If a chip contains 250,000 inverters used in this manner, find the total static power
dissipation.

Solution: (a) If we assume that the PMOS transistor is operating in the saturation region,
then the current flow through the inverter is defined by

s = 52 (Vs = V)2
stat —
2", b

HA 2
ZIZOWX((3.5V—5V)+1V) =30 nA

(b) Since the static current, Iy,,, flowing through the PMOS transistor also flows through
the NMOS transistor, then assuming that the NMOS transistor is operating in the triode
region, we have

’ Wn 1 2
Istat = knL_n (VGS - VTn)VDS - E DS

UA I,
30MA=240WX 2.5Vfo—§Vf

1 =20V, — 4V

Solving this quadratic equation yields Vy = 0.05 V. Note that the output voltage V
satisfies the assumption that the PMOS transistor is operating in the saturation region while
the NMOS transistor is operating in the triode region.

(c) The static power dissipated in the inverter is

PS :Istar X VDD =3OMAX5V= ISO/LW
(d) The static power dissipated by 250,000 inverters is
250,000 x Ps =37.5W

PROBLEMS 157

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

3.1 Consider the circuit shown in Figure P3.1.
(a) Show the truth table for the logic function f.
(b) If each gate in the circuit is implemented as a CMOS gate, how many transistors are

needed?
< -
X P DC

x5 DC

1 -

Figure P3.1 A sum-of-products CMOS circuit.

3.2 (a) Show that the circuit in Figure P3.2 is functionally equivalent to the circuit in Figure
P3.1.
(b) How many transistors are needed to build this CMOS circuit?

X1
X2

/]

X3 >0—4 g

Figure P3.2 A CMOS circuit built with multiplexers.

3.3 (a) Show that the circuit in Figure P3.3 is functionally equivalent to the circuit in Figure
P3.2.
(b) How many transistors are needed to build this CMOS circuit if each XOR gate is
implemented using the circuit in Figure 3.61d?

158

*3.4

3.5
3.6

3.7

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

X, A

X3

Figure P3.3 Circuit for problem 3.3.

In Section 3.8.8 we said that a six-input CMOS AND gate can be constructed using two
three-input AND gates and a two-input AND gate. This approach requires 22 transistors.
Show how you can use only CMOS NAND and NOR gates to build the six-input AND
gate, and calculate the number of transistors needed. (Hint: use DeMorgan’s theorem.)

Repeat problem 3.4 for an eight-input CMOS OR gate.

(a) Give the truth table for the CMOS circuit in Figure P3.4.

(b) Derive a canonical sum-of-products expression for the truth table from part (a). How
many transistors are needed to build a circuit representing the canonical form if only AND,
OR, and NOT gates are used?

L

Figure P3.4 A three-input CMOS circuit.

(a) Give the truth table for the CMOS circuit in Figure P3.5.

(b) Derive the simplest sum-of-products expression for the truth table in part (a). How
many transistors are needed to build the sum-of-products circuit using CMOS AND, OR,
and NOT gates?

PROBLEMS 159

Vbb

Figure P3.5 A four-input CMOS circuit.

*3.8 Figure P3.6 shows half of a CMOS circuit. Derive the other half that contains the PMOS
transistors.

Figure P3.6 The PDN in a CMOS circuit.

160

3.9

3.10

3.11

*3.12

3.13

*3.14

3.15

3.16

*3.17

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Figure P3.7 shows half of a CMOS circuit. Derive the other half that contains the NMOS
transistors.

Vbp
Vy — o| O|
|
Vi
Vx3
[]
v, :

Figure P3.7 The PUN in a CMOS circuit.

Derive a CMOS complex gate for the logic function f (x1, x2, x3, x4) = Y_m(0, 1, 2, 4, 5,
6,8,9, 10).

Derive a CMOS complex gate for the logic function f (x1, x, x3, x4) = Y_m(0, 1, 2, 4, 6,
8,10, 12, 14).

Derive a CMOS complex gate for the logic function f = xy + xz. Use as few transistors as
possible (Hint: consider f).

Derive a CMOS complex gate for the logic function f = xy + xz + yz. Use as few transis-
tors as possible (Hint: consider f').

For an NMOS transistor, assume that k, = 20 ,uA/V2, W/L = 2.5 um/0.5 um, Vgs =
5V, and Vr = 1 V. Calculate

(a) ID when VDS =5V

(b) ID when VDS =02V

For a PMOS transistor, assume that kl/, =10 /LA/Vz, W/L = 2.5 um/0.5 um, Vgs =
—5V, and V;y = —1 V. Calculate

(a) Ip when Vpg = =5V

(b) ID when VDS =-02V

For an NMOS transistor, assume that k;, = 20 ,uA/V2, W/L = 5.0 um/0.5 um, Vs =
5V, and Vy = 1 V. For small Vg, calculate Rpg.

For an NMOS transistor, assume that k, = 40 uA/V?, W/L = 3.5 um/0.35 um, Vs =
3.3V, and Vy = 0.66 V. For small Vpg, calculate Rpgs.

3.18

3.19

3.20

3.21

PROBLEMS 161

For a PMOS transistor, assume that kz/v =10 MA/Vz, W/L = 5.0 um/0.5 um, Vgs =
—5V,and V; = —1 V. For Vpg = —4.8 V, calculate Rpgs.

For a PMOS transistor, assume that k[’, = 16 uA/V?, W/L = 3.5 um/0.35 um, Vgs =
—3.3V,and V7 = —0.66 V. For Vps = —3.2 'V, calculate Rps.

In Example 3.13 we showed how to calculate voltage levels in a pseudo-NMOS inverter.
Figure P3.8 depicts a pseudo-PMOS inverter. In this technology, a weak NMOS transistor
is used to implement a pull-down resistor.

When V, = 0, V; has a high value. The PMOS transistor is operating in the triode
region, while the NMOS transistor limits the current flow, because it is operating in the
saturation region. The current through the PMOS and NMOS transistors has to be the same
and is given by equations 3.1 and 3.2. Find an expression for the high-output voltage,
Vi = Vog, in terms of Vpp, V7, k,, and k,,, where k, and k, are gain factors as defined in
Example 3.13.

Figure P3.8 The pseudo-PMOS inverter.

For the circuit in Figure P3.8, assume the values k, = 60 UA/V?, kl/, =04k, W,/L, =
0.5 um/0.5 um, W,/L, = 4.0 um/0.5 um, Vpp = 5V and Vr = 1 V. When V, = 0,
calculate the following:

(a) The static current, Iy,

(b) The on-resistance of the PMOS transistor

(©) Vou

(d) The static power dissipated in the inverter

(e) The on-resistance of the NMOS transistor

(f) Assume that the inverter is used to drive a capacitive load of 70 fF. Using equation 3.4,
calculate the low-to-high and high-to-low propagation delays.

162

3.22

3.23

3.24
*3.25

3.26

3.27

*3.28
3.29

3.30

3.31

*3.32
3.33

3.34

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

Repeat problem 3.21 assuming that the size of the NMOS transistor is changed to W,,/L,, =
4.0 um/0.5 pm.

Example 3.13 (see Figure 3.72) shows that in the pseudo-NMOS technology the pull-up
device is implemented using a PMOS transistor. Repeat this problem for a NAND gate
built with pseudo-NMOS technology. Assume that both of the NMOS transistors in the
gate have the same parameters, as given in Example 3.14.

Repeat problem 3.23 for a pseudo-NMOS NOR gate.

(@ ForVig =4V, Vog =45V, V;y =1V, Vg, =0.3V,and Vpp = 5V, calculate the
noise margins NMy and NM..

(b) Consider an eight-input NAND gate built using NMOS technology. If the voltage drop
across each transistor is 0.1 V, what is Vo, ? What is the corresponding NM| using the other
parameters from part (a).

Under steady-state conditions, for an n-input CMOS NAND gate, what are the voltage
levels of Vi, and Vop ? Explain.

For a CMOS inverter, assume that the load capacitance is C = 150 fF and Vpp = 5 V.
The inverter is cycled through the low and high voltage levels at an average rate of f =
75 MHz.

(a) Calculate the dynamic power dissipated in the inverter.

(b) For a chip that contains the equivalent of 250,000 inverters, calculate the total dynamic
power dissipated if 20 percent of the gates change values at any given time.

Repeat problem 3.27 for C = 120 {fF, Vpp = 3.3 V, and f = 125 MHz.
In a CMOS inverter, assume that k, = 20 uA/V>, k' = 0.4 x k!, W, /L, = 5.0 um/0.5 um,

W,/L, = 5.0 um/0.5 um, and Vpp = 5 V. Thie inverter drives a load capacitance of
150 fF.

(a) Find the high-to-low propagation delay.

(b) Find the low-to-high low propagation delay.

(c) What should be the dimensions of the PMOS transistor such that the low-to-high and
high-to-low propagation delays are equal? Ignore the effect of the PMOS transistor’s size

on the load capacitance of the inverter.
Repeat problem 3.29 for the parameters k!, = 40 uA/V?, k, =0.4xk,, W,/L, =W, /L, =
3.5 um/0.35 um, and Vpp = 3.3 V.

In a CMOS inverter, assume that W,,/L, = 2 and W,,/L, = 4. For a CMOS NAND gate,
calculate the required W/L ratios of the NMOS and PMOS transistors such that the available
current in the gate to drive the output both low and high is equal to that in the inverter.

Repeat problem 3.31 for a CMOS NOR gate.

Repeat problem 3.31 for the CMOS complex gate in Figure 3.16. The transistor sizes
should be chosen such that in the worst case the available current is at least as large as in
the inverter.

Repeat problem 3.31 for the CMOS complex gate in Figure 3.17.

3.35

3.36

3.37

3.38

3.39

3.40
3.41
3.42

3.43

3.44

*3.45

3.46

PROBLEMS 163

In Figure 3.69 we showed a solution to the static power dissipation problem when NMOS
pass transistors are used. Assume that the PMOS pull-up transistor is removed from this
circuit. Assume the parameters kX’ = 60 uA/V?, k, = 0.4xk,, W,/L, = 1.0 £m/0.25 pum,
W,/L, = 2.0 um/0.25 um, Vpp = 2.5V, and Vr = 0.6 V. For V3 = 1.6 V, calculate the
following:

(a) the static current, Iy,

(b) the voltage, Vy, at the output of the inverter

(c) the static power dissipation in the inverter

(d) If a chip contains 500,000 inverters used in this manner, find the total static power
dissipation.

Using the style of drawing in Figure 3.66, draw a picture of a PLA programmed to implement
Sk, x2, x3) = Y m(1,2,4,7). The PLA should have the inputs xi, ..., x3; the product
terms Py, ..., P4; and the outputs f; and f>.

Using the style of drawing in Figure 3.66, draw a picture of a PLA programmed to implement
Sl x2, x3) = Y m(0, 3,5, 6). The PLA should have the inputs xi, ..., x3; the product
terms Py, ..., P4; and the outputs f; and f>.

Show how the function f; from problem 3.36 can be realized in a PLA of the type shown in
Figure 3.65. Draw a picture of such a PLA programmed to implement f;. The PLA should
have the inputs x1, ..., x3; the sum terms S, ..., S4; and the outputs f; and f>.

Show how the function f; from problem 3.37 can be realized in a PLA of the type shown in
Figure 3.65. Draw a picture of such a PLA programmed to implement f;. The PLA should
have the inputs xi, .. ., x3; the sum terms Sy, . . ., S4; and the outputs f; and f>.

Repeat problem 3.38 using the style of PLA drawing shown in Figure 3.63.
Repeat problem 3.39 using the style of PLA drawing shown in Figure 3.63.

Given that fj is implemented as described in problem 3.36, list all of the other possible logic
functions that can be realized using output f> in the PLA.

Given that f] is implemented as described in problem 3.37, list all of the other possible logic
functions that can be realized using output f; in the PLA.

Consider the function f (x1, x2, X3) = x1X2 + X1x3 + X2X3. Show a circuit using 5 two-input
lookup-tables (LUTs) to implement this expression. As shown in Figure 3.39, give the truth
table implemented in each LUT. You do not need to show the wires in the FPGA.

Consider the function f (x|, x2, x3) = Y_m(2, 3,4, 6, 7). Show how it can be realized using
two two-input LUTs. As shown in Figure 3.39, give the truth table implemented in each
LUT. You do not need to show the wires in the FPGA.

Given the function f = xjxpx4 + X2X3%4 + X1 X2X3, a straightforward implementation in an
FPGA with three-input LUTs requires four LUTs. Show how it can be done using only 3
three-input LUTs. Label the output of each LUT with an expression representing the logic
function that it implements.

164

3.47

3.48

3.49

3.50

3.51

CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

For fin problem 3.46, show a circuit of two-input LUTs that realizes the function. You are
to use exactly seven two-input LUTs. Label the output of each LUT with an expression
representing the logic function that it implements.

Figure 3.39 shows an FPGA programmed to implement a function. The figure shows one
pin used for function f, and several pins that are unused. Without changing the programming
of any switch that is turned on in the FPGA in the figure, list 10 other logic functions, in
addition to f, that can be implemented on the unused pins.

Assume that a gate array contains the type of logic cell depicted in Figure P3.9. The inputs
iny, ..., in7 can be connected to either 1 or 0, or to any logic signal.

(a) Show how the logic cell can be used to realize f = xjx; + x3.

(b) Show how the logic cell can be used to realize f = x;x3 + xpx3.

inl in2 in3

L
F

in4d in5 in6 in7

out

Figure P3.9 A gate-array logic cell.

Assume that a gate array exists in which the logic cell used is a three-input NAND gate. The
inputs to each NAND gate can be connected to either 1 or 0, or to any logic signal. Show
how the following logic functions can be realized in the gate array. (Hint: use DeMorgan’s
theorem.)

(@) f =x1x2 +x3

(b) f = x1x2x4 + X2X3X4 + X1

Write VHDL code to represent the function
f = x0X3X4 + X1X2X4 + X1X0X3 + X1X2X3

(a) Use your CAD tools to implement f in some type of chip, such as a CPLD. Show the
logic expression generated for f by the tools. Use timing simulation to determine the time
needed for a change in inputs x;, x, or x3 to propagate to the output f.

(b) Repeat part (a) using a different chip, such as an FPGA for implementation of the circuit.

PROBLEMS 165

3.52 Repeat problem 3.51 for the function
f=0+x2+Xx) 2 +x3+X4) - (X1 +x3 +Xg) - (X1 + X3 +Xg)

3.53 Repeat problem 3.51 for the function

F X1, ..o, X7) = X1X3X6 4 X1X4X5X6 + X2X3X7 + XoX4X5X7

3.54 What logic gate is realized by the circuit in Figure P3.10? Does this circuit suffer from any
major drawbacks?

X

_[>C_1

Figure P3.10 Circuit for problem 3.54.

*3.55 What logic gate is realized by the circuit in Figure P3.11? Does this circuit suffer from any
major drawbacks?

' <

T

Figure P3.11 Circuit for problem 3.55.

166 CHAPTER 3 . IMPLEMENTATION TECHNOLOGY

| REFERENCES

1.

2.

A

~

I1.
12.

A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th ed. (Oxford University
Press: New York, 2003).

J. M. Rabaey, Digital Integrated Circuits, (Prentice-Hall: Englewood Cliffs, NJ,
1996).

Texas Instruments, Logic Products Selection Guide and Databook CD-ROM, 1997.
National Semiconductor, VHC/VHCT Advanced CMOS Logic Databook, 1993.
Motorola, CMOS Logic Databook, 1996.

Toshiba America Electronic Components, TC74VHC/VHCT Series CMOS Logic
Databook, 1994.

Integrated Devices Technology, High Performance Logic Databook, 1994.

J. E. Wakerly, Digital Design Principles and Practices 3rd ed. (Prentice-Hall:
Englewood Cliffs, NJ, 1999).

. M. M. Mano, Digital Design 3rd ed. (Prentice-Hall: Upper Saddle River, NJ, 2002).
10.

R. H. Katz, Contemporary Logic Design (Benjamin/Cummings: Redwood City, CA,
1994).

J. P. Hayes, Introduction to Logic Design (Addison-Wesley: Reading, MA, 1993).

D. D. Gajski, Principles of Digital Design (Prentice-Hall: Upper Saddle River, NJ,
1997).

chapter

4

OprPTiMIZED IMPLEMENTATION OF LOGIC
FUNCTIONS

CHAPTER OBJECTIVES

In this chapter you will learn about:

e Synthesis of logic functions

e Analysis of logic circuits

e Techniques for deriving minimum-cost implementations of logic functions
e Graphical representation of logic functions in the form of Karnaugh maps
e Cubical representation of logic functions

e Use of CAD tools and VHDL to implement logic functions

167

168 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

In Chapter 2 we showed that algebraic manipulation can be used to find the lowest-cost implementations of
logic functions. The purpose of that chapter was to introduce the basic concepts in the synthesis process.
The reader is probably convinced that it is easy to derive a straightforward realization of a logic function in
a canonical form, but it is not at all obvious how to choose and apply the theorems and properties of section
2.5 to find a minimum-cost circuit. Indeed, the algebraic manipulation is rather tedious and quite impractical
for functions of many variables.

If CAD tools are used to design logic circuits, the task of minimizing the cost of implementation does
not fall to the designer; the tools perform the necessary optimizations automatically. Even so, it is essential to
know something about this process. Most CAD tools have many features and options that are under control
of the user. To know when and how to apply these options, the user must have an understanding of what the
tools do.

In this chapter we will introduce some of the optimization techniques implemented in CAD tools and
show how these techniques can be automated. As a first step we will discuss a graphical approach, known as
the Karnaugh map, which provides a neat way to manually derive minimum-cost implementations of simple
logic functions. Although it is not suitable for implementation in CAD tools, it illustrates a number of key
concepts. We will show how both two-level and multilevel circuits can be designed. Then we will describe a
cubical representation for logic functions, which is suitable for use in CAD tools. We will also continue our
discussion of the VHDL language.

| 4.1 KARNAUGH MAP

In section 2.6 we saw that the key to finding a minimum-cost expression for a given logic
function is to reduce the number of product (or sum) terms needed in the expression, by
applying the combining property 14a (or 14b) as judiciously as possible. The Karnaugh map
approach provides a systematic way of performing this optimization. To understand how it
works, it is useful to review the algebraic approach from Chapter 2. Consider the function
f in Figure 4.1. The canonical sum-of-products expression for f consists of minterms m,
my, my, ms, and mg, so that

[= X1X2X3 + X1x0X3 + X1X0X3 + X1 X2X3 + X1 X2X3

The combining property 14a allows us to replace two minterms that differ in the value of
only one variable with a single product term that does not include that variable at all. For
example, both m(and m, include X; and X3, but they differ in the value of x, because mj
includes x, while m, includes x,. Thus

X1X2X3 + X1XX3 = X1 (X2 + X2)X3
1%

=X
=X1X3

4.1 KARNAUGH MAP

Row
number | X3 X2 X3 f
0 0 0 O 1
1 0 0 1 0
2 0o 1 0 1
3 0o 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 4.1 The function f (x|, x,, x3) = 3" m(0,2,4, 5, 6).

Hence m(and m, can be replaced by the single product term x;X3. Similarly, m4 and mg
differ only in the value of x, and can be combined using
X1X2X3 + X1X0X3 = X1 (X2 + x2)X3
= X1 - 1-)_63
= X1X3
Now the two newly generated terms, X;x3 and x;X3, can be combined further as
X1X3 + x1X3 = (X1 + Xx1)X3
=1-Xx3
=X
These optimization steps indicate that we can replace the four minterms my, m,, my4, and
mg with the single product term X3. In other words, the minterms my, m,, m4, and mg are

all included in the term X3. The remaining minterm in f is ms. It can be combined with my,
which gives

X1X2X3 + X[X2X3 = X[X2
Recall that theorem 75 in section 2.5 indicates that
my = my + my

which means that we can use the minterm m,4 twice—to combine with minterms myg, m,,
and mg to yield the term X3 as explained above and also to combine with ms to yield the
term xXx».

We have now accounted for all the minterms in f'; hence all five input valuations for
which f = 1 are covered by the minimum-cost expression

f=xX+xx

169

170

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

The expression has the product term X3 because f = 1 when x3 = 0 regardless of the values
of x; and x,. The four minterms myg, my, my4, and mg represent all possible minterms for
which x3 = 0; they include all four valuations, 00, 01, 10, and 11, of variables x; and x;.
Thus if x3 = 0, then it is guaranteed that f = 1. This may not be easy to see directly
from the truth table in Figure 4.1, but it is obvious if we write the corresponding valuations
grouped together:

X1 X2 X3
mg 0 0
my 1 0
my 1 0 0
meg 1 1 0

In a similar way, if we look at m4 and ms as a group of two

X1 X2 X3
my 1 0
ms 1 1

it is clear that when x; = 1 and x, = 0, then f = 1 regardless of the value of x3.

The preceding discussion suggests that it would be advantageous to devise a method
that allows easy discovery of groups of minterms for which f = 1 that can be combined
into single terms. The Karnaugh map is a useful vehicle for this purpose.

The Karnaugh map [1] is an alternative to the truth-table form for representing a
function. The map consists of cells that correspond to the rows of the truth table. Consider
the two-variable example in Figure 4.2. Part (@) depicts the truth-table form, where each
of the four rows is identified by a minterm. Part (b) shows the Karnaugh map, which has
four cells. The columns of the map are labeled by the value of x|, and the rows are labeled
by x;. This labeling leads to the locations of minterms as shown in the figure. Compared
to the truth table, the advantage of the Karnaugh map is that it allows easy recognition of
minterms that can be combined using property 14a from section 2.5. Minterms in any two
cells that are adjacent, either in the same row or the same column, can be combined. For
example, the minterms m, and m3 can be combined as

my +m3 = X1 X2 + X1x2
= x1(X2 +x2)
=X - 1

=-x1

4.1 KARNAUGH MAP

X1 X Xy
- X
00| m 2 0o 1
0 1| m 0| mg | m,
1 0] m,

m m
11| m o i
(a) Truth table (b) Karnaugh map

Figure 4.2 Location of two-variable minterms.

The Karnaugh map is not just useful for combining pairs of minterms. As we will see in
several larger examples, the Karnaugh map can be used directly to derive a minimum-cost
circuit for a logic function.

Two-Variable Map

A Karnaugh map for a two-variable function is given in Figure 4.3. It corresponds to
the function f of Figure 2.15. The value of f for each valuation of the variables x; and x;
is indicated in the corresponding cell of the map. Because a 1 appears in both cells of the
bottom row and these cells are adjacent, there exists a single product term that can cause f
to be equal to 1 when the input variables have the values that correspond to either of these
cells. To indicate this fact, we have circled the cell entries in the map. Rather than using
the combining property formally, we can derive the product term intuitively. Both of the
cells are identified by x, = 1, but x; = 0 for the left cell and x; = 1 for the right cell.
Thus if x, = 1, then f = 1 regardless of whether x; is equal to O or 1. The product term
representing the two cells is simply x;.

Similarly, f = 1 for both cells in the first column. These cells are identified by x; = 0.
Therefore, they lead to the product term X;. Since this takes care of all instances where
f =1, it follows that the minimum-cost realization of the function is

f=x+Xx

Evidently, to find a minimum-cost implementation of a given function, it is necessary
to find the smallest number of product terms that produce a value of 1 for all cases where

X1
*2 0 1

o
[EEY
o

= xtx
) (€] N —

Figure 4.3 The function of Figure 2.15.

171

172

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

f = 1. Moreover, the cost of these product terms should be as low as possible. Note that a
product term that covers two adjacent cells is cheaper to implement than a term that covers
only a single cell. For our example once the two cells in the bottom row have been covered
by the product term x,, only one cell (top left) remains. Although it could be covered by
the term XX, it is better to combine the two cells in the left column to produce the product
term X because this term is cheaper to implement.

Three-Variable Map

A three-variable Karnaugh map is constructed by placing 2 two-variable maps side
by side. Figure 4.4 shows the map and indicates the locations of minterms in it. In this
case each valuation of x; and x; identifies a column in the map, while the value of x3
distinguishes the two rows. To ensure that minterms in the adjacent cells in the map can
always be combined into a single product term, the adjacent cells must differ in the value of
only one variable. Thus the columns are identified by the sequence of (x|, x,) values of 00,
01, 11, and 10, rather than the more obvious 00, 01, 10, and 11. This makes the second and
third columns different only in variable x;. Also, the first and the fourth columns differ only
in variable x;, which means that these columns can be considered as being adjacent. The
reader may find it useful to visualize the map as a rectangle folded into a cylinder where
the left and the right edges in Figure 4.4b are made to touch. (A sequence of codes, or
valuations, where consecutive codes differ in one variable only is known as the Gray code.
This code is used for a variety of purposes, some of which will be encountered later in the
book.)

Figure 4.5a represents the function of Figure 2.18 in Karnaugh-map form. To synthe-
size this function, it is necessary to cover the four 1s in the map as efficiently as possible.
It is not difficult to see that two product terms suffice. The first covers the 1s in the top row,
which are represented by the term x;x3. The second term is X,x3, which covers the 1s in
the bottom row. Hence the function is implemented as

[=xi1x3 + X3

which describes the circuit obtained in Figure 2.19a.

*1 X X3 xpxy

0.0 0 m 3N\ 00 01 11 10
0 0 1| m

01 0|m O [mo|ma]ms | ™
0 1 1| my 1| my | my| my | ms
1 0 0| my

1.0 1] mg (b) Karnaugh map

1 1 0] myg

11 1] m,

(a) Truth table

Figure 4.4 Location of three-variable minterms.

4.1 KARNAUGH MAP

(a) The function of Figure 2.18

XX
3 00 01 11 10
ol@ |||y
1lololofr]] 7753 0%

~F T

(b) The function of Figure 4.1

Figure 4.5 Examples of three-variable Karnaugh maps.

In a three-variable map it is possible to combine cells to produce product terms that
correspond to a single cell, two adjacent cells, or a group of four adjacent cells. Realization
of a group of four adjacent cells using a single product term is illustrated in Figure 4.5b,
using the function from Figure 4.1. The four cells in the top row correspond to the (x1, x», x3)
valuations 000, 010, 110, and 100. As we discussed before, this indicates that if x3; = 0, then
f = 1 for all four possible valuations of x; and x,, which means that the only requirement
is that x3 = 0. Therefore, the product term X3 represents these four cells. The remaining 1,
corresponding to minterm s, is best covered by the term x;X,, obtained by combining the
two cells in the right-most column. The complete realization of f is

f=x+xx

It is also possible to have a group of eight 1s in a three-variable map. This is the trivial
case where f = 1 for all valuations of input variables; in other words, f is equal to the con-
stant 1.

The Karnaugh map provides a simple mechanism for generating the product terms that
should be used to implement a given function. A product term must include only those
variables that have the same value for all cells in the group represented by this term. If the
variable is equal to 1 in the group, it appears uncomplemented in the product term; if it is
equal to 0, it appears complemented. Each variable that is sometimes 1 and sometimes 0
in the group does not appear in the product term.

Four-Variable Map

A four-variable map is constructed by placing 2 three-variable maps together to create
four rows in the same fashion as we used 2 two-variable maps to form the four columns in a
three-variable map. Figure 4.6 shows the structure of the four-variable map and the location

173

174

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

X1
s XXy —_—
374 00 01 11 10

00| mqo | my | M| Mg

01| my | ms | my3| Mg

X4
11| my | mq | mys|my

10 | my | Mo | Mys] Mo

X,

Figure 4.6 A four-variable Karnaugh map.

of minterms. We have included in this figure another frequently used way of designating
the rows and columns. As shown in blue, it is sufficient to indicate the rows and columns
for which a given variable is equal to 1. Thus x; = 1 for the two right-most columns,
x, = 1 for the two middle columns, x3 = 1 for the bottom two rows, and x4 = 1 for the
two middle rows.

Figure 4.7 gives four examples of four-variable functions. The function f; has a group
of four 1s in adjacent cells in the bottom two rows, for which x, = 0 and x3 = 1—they
are represented by the product term X,x3. This leaves the two 1s in the second row to
be covered, which can be accomplished with the term x;X3x4. Hence the minimum-cost
implementation of the function is

1 =Xox3 + x1X3%4

The function f, includes a group of eight 1s that can be implemented by a single term, x3.
Again, the reader should note that if the remaining two 1s were implemented separately,
the result would be the product term x;x3x4. Implementing these 1s as a part of a group of
four Is, as shown in the figure, gives the less expensive product term x;xy4.

Just as the left and the right edges of the map are adjacent in terms of the assignment
of the variables, so are the top and the bottom edges. Indeed, the four corners of the map
are adjacent to each other and thus can form a group of four 1s, which may be implemented
by the product term x,X4. This case is depicted by the function f3. In addition to this group
of 1s, there are four other Is that must be covered to implement f;. This can be done as
shown in the figure.

In all examples that we have considered so far, a unique solution exists that leads to
a minimum-cost circuit. The function f; provides an example where there is some choice.
The groups of four 1s in the top-left and bottom-right corners of the map are realized by the
terms X X3 and x;x3, respectively. This leaves the two 1s that correspond to the term x;x,x3.
But these two 1s can be realized more economically by treating them as a part of a group
of four 1s. They can be included in two different groups of four, as shown in the figure.

4.1 KARNAUGH MAP

BN 00 01 11 10 BN 00 01 11 10

0 o o
oo o |1]2 orf o] o[t 1)
=

11|1 1 1 1

0] 1) ofl o[l 10 | 1|1 1]
ot e
f1 = XXy ¥y fy = Xyt xyxy
1% X1%)
3N 00 01 11 10 3N 00 01 11 10
ol D)lolo|(z] ol [o
ol ofofofo ol lr [L2)]l 2]l o
Wl (1 ()|)| o 1l oll o llx]] 1
0l 1JNo |1 0] oll ollla)] 1
\ -'—
1
_ |7 ,I_I |7 1 |\ 1 ;lﬁ X1X2
3 = XpXxgt X X3+ X5X3%, fq = xpx3txxg+ o1
X2 3

Figure 4.7 Examples of four-variable Karnaugh maps.

One choice leads to the product term x;x;, and the other leads to x,x3. Both of these terms
have the same cost; hence it does not matter which one is chosen in the final circuit. Note
that the complement of x3 in the term x,x3 does not imply an increased cost in comparison
with x;x,, because this complement must be generated anyway to produce the term X;x3,
which is included in the implementation.

Five-Variable Map

We can use 2 four-variable maps to construct a five-variable map. It is easy to imagine
a structure where one map is directly behind the other, and they are distinguished by x5 = 0
for one map and x5 = 1 for the other map. Since such a structure is awkward to draw, we
can simply place the two maps side by side as shown in Figure 4.8. For the logic function
given in this example, two groups of four 1s appear in the same place in both four-variable
maps; hence their realization does not depend on the value of xs. The same is true for the
two groups of two Is in the second row. The 1 in the top-right corner appears only in the

176

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

X% XX
3N 00 01 11 10 BN 00 01 11 10

00 | 00 : /ﬂ
01 EE 01 D)

1] 1 ll 1] 1 1|
0] 1 1| 10] 1 lI
xSZO x5=1

I 1T 1 T 1
S| = XX3+ X X3x, + X XpX3X,4

Figure 4.8 A five-variable Karnaugh map.

right map, where x5 = 1; it is a part of the group of two 1s realized by the term x;X,X3xs.
Note that in this map we left blank those cells for which f = 0, to make the figure more
readable. We will do likewise in a number of maps that follow.

Using a five-variable map is obviously more awkward than using maps with fewer
variables. Extending the Karnaugh map concept to more variables is not useful from
the practical point of view. This is not troublesome, because practical synthesis of logic
functions is done with CAD tools that perform the necessary minimization automatically.
Although Karnaugh maps are occasionally useful for designing small logic circuits, our main
reason for introducing the Karnaugh maps is to provide a simple vehicle for illustrating the
ideas involved in the minimization process.

4.2 STRATEGY FOR MINIMIZATION

For the examples in the preceding section, we used an intuitive approach to decide how the 1s
in a Karnaugh map should be grouped together to obtain the minimum-cost implementation
of a given function. Our intuitive strategy was to find as few as possible and as large as
possible groups of 1s that cover all cases where the function has a value of 1. Each group
of 1Is has to comprise cells that can be represented by a single product term. The larger
the group of 1s, the fewer the number of variables in the corresponding product term. This
approach worked well because the Karnaugh maps in our examples were small. For larger
logic functions, which have many variables, such intuitive approach is unsuitable. Instead,
we must have an organized method for deriving a minimum-cost implementation. In this
section we will introduce a possible method, which is similar to the techniques that are

4.2 STRATEGY FOR MINIMIZATION

automated in CAD tools. To illustrate the main ideas, we will use Karnaugh maps. Later,
in section 4.8, we will describe a different way of representing logic functions, which is
used in CAD tools.

4,2,1 TERMINOLOGY

A huge amount of research work has gone into the development of techniques for synthesis
of logic functions. The results of this research have been published in numerous papers.
To facilitate the presentation of the results, certain terminology has evolved that avoids
the need for using highly descriptive phrases. We define some of this terminology in the
following paragraphs because it is useful for describing the minimization process.

Literal

A given product term consists of some number of variables, each of which may appear
either in uncomplemented or complemented form. Each appearance of a variable, either
uncomplemented or complemented, is called a literal. For example, the product term x;X,x3
has three literals, and the term Xx3X4x¢ has four literals.

Implicant

A product term that indicates the input valuation(s) for which a given function is equal
to 1 is called an implicant of the function. The most basic implicants are the minterms,
which we introduced in section 2.6.1. For an n-variable function, a minterm is an implicant
that consists of n literals.

Consider the three-variable function in Figure 4.9. There are 11 possible implicants for
this function. This includes the five minterms: X;X>X3, X1X2X3, X1X2X3, X1X2X3, and X1 xpX3.
Then there are the implicants that correspond to all possible pairs of minterms that can be
combined, namely, XX, (mo and my), X;X3 (my and my), X1x3 (m; and m3), X1x, (m and ms),
and x,x3 (m3 and my). Finally, there is one implicant that covers a group of four minterms,
which consists of a single literal x;.

00 01 11 10

0
1‘1@_3)0
|

1 Xa¥3

Figure 4.9 Three-variable function f (x|, x,, x3) =
S m(,1,2,3,7).

177

178

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

Prime Implicant

Animplicant is called a prime implicant if it cannot be combined into another implicant
that has fewer literals. Another way of stating this definition is to say that it is impossible
to delete any literal in a prime implicant and still have a valid implicant.

In Figure 4.9 there are two prime implicants: X; and x,x3. It is not possible to delete
a literal in either of them. Doing so for xX; would make it disappear. For x,x3, deleting
a literal would leave either x, or x3. But x, is not an implicant because it includes the
valuation (xj, x5, x3) = 110 for which f = 0, and x3 is not an implicant because it includes
(x1, x2, x3) = 101 for which f = 0.

Cover

A collection of implicants that account for all valuations for which a given function is
equal to 1 is called a cover of that function. A number of different covers exist for most
functions. Obviously, a set of all minterms for which f = 1 is a cover. It is also apparent
that a set of all prime implicants is a cover.

A cover defines a particular implementation of the function. In Figure 4.9 a cover
consisting of minterms leads to the expression

f = X1X2X3 4+ X1X2X3 4 X1X2X3 4+ X1X2X3 + X1 X2X3
Another valid cover is given by the expression
[=X1% +X1x + x0x3
The cover comprising the prime implicants is
[=% +xx

While all of these expressions represent the function f correctly, the cover consisting of
prime implicants leads to the lowest-cost implementation.

Cost

In Chapter 2 we suggested that a good indication of the cost of a logic circuit is the
number of gates plus the total number of inputs to all gates in the circuit. We will use this
definition of cost throughout the book. But we will assume that primary inputs, namely,
the input variables, are available in both true and complemented forms at zero cost. Thus
the expression

[=x1X2 +x3%4

has a cost of nine because it can be implemented using two AND gates and one OR gate,
with six inputs to the AND and OR gates.

If an inversion is needed inside a circuit, then the corresponding NOT gate and its input
are included in the cost. For example, the expression

g = x1X2 + x3(Xs + x5)

is implemented using two AND gates, two OR gates, and one NOT gate to complement
(x1X2 + x3), with nine inputs. Hence the total cost is 14.

4.2 STRATEGY FOR MINIMIZATION

4.2.2 MINIMIZATION PROCEDURE

We have seen that it is possible to implement a given logic function with various circuits.
These circuits may have different structures and different costs. When designing a logic
circuit, there are usually certain criteria that must be met. One such criterion is likely to
be the cost of the circuit, which we considered in the previous discussion. In general, the
larger the circuit, the more important the cost issue becomes. In this section we will assume
that the main objective is to obtain a minimum-cost circuit.

Having said that cost is the primary concern, we should note that other optimization
criteria may be more appropriate in some cases. For instance, in Chapter 3 we described
several types of programmable-logic devices (PLDs) that have a predefined basic structure
and can be programmed to realize a variety of different circuits. For such devices the main
objective is to design a particular circuit so that it will fit into the target device. Whether or
not this circuit has the minimum cost is not important if it can be realized successfully on the
device. A CAD tool intended for design with a specific device in mind will automatically
perform optimizations that are suitable for that device. We will show in section 4.6 that the
way in which a circuit should be optimized may be different for different types of devices.

In the previous subsection we concluded that the lowest-cost implementation is
achieved when the cover of a given function consists of prime implicants. The ques-
tion then is how to determine the minimum-cost subset of prime implicants that will cover
the function. Some prime implicants may have to be included in the cover, while for others
there may be a choice. If a prime implicant includes a minterm for which f = 1 that is not
included in any other prime implicant, then it must be included in the cover and is called an
essential prime implicant. In the example in Figure 4.9, both prime implicants are essential.
The term x,x3 is the only prime implicant that covers the minterm m7, and X; is the only
one that covers the minterms my, m;, and m,. Notice that the minterm mj3 is covered by
both of these prime implicants. The minimum-cost realization of the function is

f =X+ xx;

We will now present several examples in which there is a choice as to which prime
implicants to include in the final cover. Consider the four-variable function in Figure 4.10.
There are five prime implicants: X;x3, XoX3, X3X4, X1X2X4, and xpX3x4. The essential ones
(highlighted in blue) are X,x3 (because of m), x3x4 (because of m4), and x,X3x4 (because of
my3). They must be included in the cover. These three prime implicants cover all minterms
for which f = 1 except my. It is clear that my can be covered by either X;x3 or X xpx4.
Because X;x3 has a lower cost, it is chosen for the cover. Therefore, the minimum-cost
realization is

[= X2x3 + x3X4 + x2X3x4 + X123

From the preceding discussion, the process of finding a minimum-cost circuit involves
the following steps:

1. Generate all prime implicants for the given function f.

2. Find the set of essential prime implicants.

179

180 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

XX
3N 00 01 11 10
00 | X XpXy
01 qi 1) XXy,
= —
1ff 1 LB 1
@] 1] 1 [[IH— x3%4

T

X1x3 5(2)(,‘3

Figure 4.10 Four-variable function f(xi, ..., xs) =
Zm(Z, 3,5,6,7,10, 11, 13, 14).

3. If the set of essential prime implicants covers all valuations for which f = 1, then
this set is the desired cover of f. Otherwise, determine the nonessential prime
implicants that should be added to form a complete minimum-cost cover.

The choice of nonessential prime implicants to be included in the cover is governed by the
cost considerations. This choice is often not obvious. Indeed, for large functions there may
exist many possibilities, and some heuristic approach (i.e., an approach that considers only
a subset of possibilities but gives good results most of the time) has to be used. One such
approach is to arbitrarily select one nonessential prime implicant and include it in the cover
and then determine the rest of the cover. Next, another cover is determined assuming that
this prime implicant is not in the cover. The costs of the resulting covers are compared, and
the less-expensive cover is chosen for implementation.

We can illustrate the process by using the function in Figure 4.11. Of the six prime
implicants, only x3X, is essential. Consider next x;x,x3 and assume first that it will be

Y152
BN 00 01 11 10
X3 X
ol | |M|W] =™
~ XX)23
01 1 'y
N~ — xleX4
11 1 1 X1X3%y
10 1 XXX
L) 1%2%3

xl.\’zx4

Figure 4.11 The function f(x, ..., x) =
> m(0,4,8,10, 11, 12, 13, 15).

4.2 STRATEGY FOR MINIMIZATION

included in the cover. Then the remaining three minterms, m o, m,, and m;s, will require
two more prime implicants to be included in the cover. A possible implementation is

[= X3X4 + X1X2X3 + X1X3%4 + X1X2X3

The second possibility is that x;x,X3 is not included in the cover. Then x;x,x4 becomes
essential because there is no other way of covering m,3. Because x;x,x4 also covers m;s,
only mo and m;; remain to be covered, which can be achieved with x;X,x3. Therefore, the
alternative implementation is

[=X3X4 + x100X4 + X133

Clearly, this implementation is a better choice.

Sometimes there may not be any essential prime implicants at all. An example is given
in Figure 4.12. Choosing any of the prime implicants and first including it, then excluding
it from the cover leads to two alternatives of equal cost. One includes the prime implicants
indicated in black, which yields

[=X1X3X4 + X2X3%4 + X1X3X4 + X2X3%4
The other includes the prime implicants indicated in blue, which yields
[= X1X0X4 + X1x2X3 + X1 X0X4 + X1 X2X3

This procedure can be used to find minimum-cost implementations of both small and
large logic functions. For our small examples it was convenient to use Karnaugh maps
to determine the prime implicants of a function and then choose the final cover. Other
techniques based on the same principles are much more suitable for use in CAD tools; we
will introduce such techniques in sections 4.9 and 4.10.

The previous examples have been based on the sum-of-products form. We will next
illustrate that the same concepts apply for the product-of-sums form.

11 (\l /i?— X1 X3Xy
B

L x,X3X%y

X1XyXy XXXy

X1 XpX3 X1 XpX3

Figure 4.12 The function f(x|,...,x) =
> m(0,2,4,5,10, 11, 13, 15).

182

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

4.3 MINIMIZATION OF PRoODUCT-OF-SUMS FORMS

Now that we know how to find the minimum-cost sum-of-products (SOP) implementations
of functions, we can use the same techniques and the principle of duality to obtain minimum-
cost product-of-sums (POS) implementations. In this case it is the maxterms for which
f = 0 that have to be combined into sum terms that are as large as possible. Again, a sum
term is considered larger if it covers more maxterms, and the larger the term, the less costly
it is to implement.

Figure 4.13 depicts the same function as Figure 4.9 depicts. There are three maxterms
that must be covered: My, M5, and M. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

=G+ x)& +x3)

A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 4.9, which requires only one OR gate and one AND gate.

The function from Figure 4.10 is reproduced in Figure 4.14. The maxterms for which
f = 0 can be covered as shown, leading to the expression

f=00+x3)03 +x) X + X2 + X3 +X4)

This expression represents a circuit with three OR gates and one AND gate. Two of the
OR gates have two inputs, and the third has four inputs; the AND gate has three inputs.
Assuming that both the complemented and uncomplemented versions of the input variables
X1 to x4 are available at no extra cost, the cost of this circuit is 15. This compares favorably
with the SOP implementation derived from Figure 4.10, which requires five gates and 13
inputs at a total cost of 18.

In general, as we already know from section 2.6.1, the SOP and POS implementations
of a given function may or may not entail the same cost. The reader is encouraged to find
the POS implementations for the functions in Figures 4.11 and 4.12 and compare the costs
with the SOP forms.

We have shown how to obtain minimum-cost POS implementations by finding the
largest sum terms that cover all maxterms for which f = 0. Another way of obtaining

ol 111 (o 0 (x) +x3)

111 1 1 \?)

(5(1 +x2)

Figure 4.13 POS minimization of £ (x;, x,, x3) = [IM (4, 5, 6).

4.3 MINIMIZATION OF PRODUCT-OF-SUMS FORMS

TN 00 01 11 10
oof@][o] o |[oH— (3+xy

01| O 1 1 0
I -1 (x2+x3)

il 1|1 [(0)] 1

10] 1 1 1 1

(k) + Xy + X3+ X,)

Figure 4.14 POS minimization of f(xy, ..., x) =
M@, 1,4,8,9,12, 15).

the same result is by finding a minimum-cost SOP implementation of the complement of
/- Then we can apply DeMorgan’s theorem to this expression to obtain the simplest POS

realization because f = f. For example, the simplest SOP implementation of f in Figure
4.13is

[=x1%+x1%3

Complementing this expression using DeMorgan’s theorem yields

f=f=x%+x%
=X1)_Cz -)Cl)_C3
= (¥ +x2) (X1 + x3)

which is the same result as obtained above.
Using this approach for the function in Figure 4.14 gives

[=%2X3 + X3X4 + X1X2X3%4

Complementing this expression produces

f =f =XX3 + X3X4 + X1x0X3%4
=)_62)_63 .)_63)_64 - X1X2X3X4
= (x2 +x3) (x3 + x4) (X1 + X2 + X3 + X4)

which matches the previously derived implementation.

183

184

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

4.4 INCOMPLETELY SPECIFIED FUNCTIONS

In digital systems it often happens that certain input conditions can never occur. For
example, suppose that x; and x, control two interlocked switches such that both switches
cannot be closed at the same time. Thus the only three possible states of the switches
are that both switches are open or that one switch is open and the other switch is closed.
Namely, the input valuations (x;, x,) = 00, 01, and 10 are possible, but 11 is guaranteed
not to occur. Then we say that (x, x,) = 11 is a don t-care condition, meaning that a circuit
with x; and x, as inputs can be designed by ignoring this condition. A function that has
don’t-care condition(s) is said to be incompletely specified.

Don’t-care conditions, or don t-cares for short, can be used to advantage in the design
of logic circuits. Since these input valuations will never occur, the designer may assume that
the function value for these valuations is either 1 or 0, whichever is more useful in trying
to find a minimum-cost implementation. Figure 4.15 illustrates this idea. The required
function has a value of 1 for minterms my, my4, ms, meg, and mjo. Assuming the above-
mentioned interlocked switches, the x; and x, inputs will never be equal to 1 at the same
time; hence the minterms m,, my3, m 4, and m;5 can all be used as don’t-cares. The don’t-

XpX3

111 0 0 d 0

10 @. 1 d :D—— X3Xy

(a) SOP implementation

xlx
Y374 00 01 11 10

o[]a]o] 7
o[o o]

11 @ 0 d (D—— (x3+Xxy)

10| 1 1 d 1

(b) POS implementation

Figure 4.15 Two imp|ementc1ﬁons of the function f(xi, ..., xs) =
Zm(Z, 4,5,6,10) + D(12, 13, 14, 15).

4.4 INCOMPLETELY SPECIFIED FUNCTIONS

cares are denoted by the letter d in the map. Using the shorthand notation, the function f
is specified as

fO.x) =) m(2,4,5,6,10) + D(12, 13, 14, 15)

where D is the set of don’t-cares.

Part (a) of the figure indicates the best sum-of-products implementation. To form
the largest possible groups of 1s, thus generating the lowest-cost prime implicants, it is
necessary to assume that the don’t-cares Dy, D13, and D4 (corresponding to minterms
myy, m3, and my4) have the value of 1 while D5 has the value of 0. Then there are only
two prime implicants, which provide a complete cover of f. The resulting implementation
is

f = Xz)_Cg, + X3)_C4

Part (b) shows how the best product-of-sums implementation can be obtained. The
same values are assumed for the don’t cares. The result is

[=00+ x3)(x3 +Xx4)

The freedom in choosing the value of don’t-cares leads to greatly simplified realizations. If
we were to naively exclude the don’t-cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

[= X1x2X3 + X1x3%4 + Xpx3%4
and the POS expression would be
f= (2 +x3)(x + X)) (X1 +X2)

Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don’t-cares.

Although don’t-care values can be assigned arbitrarily, an arbitrary assignment may
not lead to a minimum-cost implementation of a given function. If there are k don’t-cares,
then there are 2% possible ways of assigning 0 or 1 values to them. In the Karnaugh map
we can usually see how best to do this assignment to find the simplest implementation.

In the example above, we chose the don’t-cares D1,, D3, and D4 to be equal to 1 and
Dis equal to O for both the SOP and POS implementations. Thus the derived expressions
represent the same function, which could also be specifiedas Y m(2, 4, 5, 6, 10, 12, 13, 14).
Assigning the same values to the don’t-cares for both SOP and POS implementations is not
always a good choice. Sometimes it may be advantageous to give a particular don’t-care
the value 1 for SOP implementation and the value 0 for POS implementation, or vice versa.
In such cases the optimal SOP and POS expressions will represent different functions,
but these functions will differ only for the valuations that correspond to these don’t-cares.
Example 4.24 in section 4.14 illustrates this possibility.

Using interlocked switches to illustrate how don’t-care conditions can occur in a real
system may seem to be somewhat contrived. However, in Chapters 6, 8, and 9 we will
encounter many examples of don’t-cares that occur in the course of practical design of
digital circuits.

185

186 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

‘ 4.5 MuLTtIPLE-OUTPUT CIRCUITS

In all previous examples we have considered single functions and their circuit implemen-
tations. In practical digital systems it is necessary to implement a number of functions
as part of some large logic circuit. Circuits that implement these functions can often be
combined into a less-expensive single circuit with multiple outputs by sharing some of the
gates needed in the implementation of individual functions.

Example 4.1 An example of gate sharing is given in Figure 4.16. Two functions, fi and f>, of the same
variables are to be implemented. The minimum-cost implementations for these functions

X% X%
1374 00 01 11 10 RERE! 00 01 11 10

00 1 ﬂ 00 (1_ ﬂ
01 @a 1)_1J 01 @_ﬂ
11 (1_? 1 (1_(1 D
Non Wik

(a) Function £ (b) Function £,

[EE

x2 —|_
X3 —
r I ,

1
xl —

=D
=D

X3 —

X, -1, 2
Xy —

v I

(c) Combined circuit for /| and f,

Figure 4.16 An example of multiple-output synthesis.

4.5 MuLTIPLE-OUTPUT CIRCUITS

are obtained as shown in parts (a) and (b) of the figure. This results in the expressions
JS1 = x1X3 + X1x3 + X2X3%4
fo = x1X3 + X103 + X2x3%4

The cost of f; is four gates and 10 inputs, for a total of 14. The cost of f; is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive
realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that
implement them need not be duplicated. The combined circuit is shown in Figure 4.16c.
Its cost is six gates and 16 inputs, for a total of 22.

In this example we reduced the overall cost by finding minimum-cost realizations of f
and f> and then sharing the gates that implement the common product terms. This strategy
does not necessarily always work the best, as the next example shows.

187

Figure 4.17 shows two functions to be implemented by a single circuit. Minimum-cost
realizations of the individual functions f; and f; are obtained from parts (a) and (b) of the
figure.

f3 = X1xg + X0X4 + X1X2%3
fa = x1%4 + Xox4 + X1X2X3%4

None of the AND gates can be shared, which means that the cost of the combined circuit
would be six AND gates, two OR gates, and 21 inputs, for a total of 29.

But several alternative realizations are possible. Instead of deriving the expressions for
f3 and f; using only prime implicants, we can look for other implicants that may be shared
advantageously in the combined realization of the functions. Figure 4.17¢ shows the best
choice of implicants, which yields the realization

f3 = X1x2X4 + X1X0X3X4 + X1X4
Ja = x1x2X4 + X1X2X3X4 + XoX4

The first two implicants are identical in both expressions. The resulting circuit is given in
Figure 4.17d. It has the cost of six gates and 17 inputs, for a total of 23.

Example 4.2

In Example 4.1 we sought the best SOP implementation for the functions f; and f, in
Figure 4.16. We will now consider the POS implementation of the same functions. The
minimum-cost POS expressions for f; and f, are

fi = G +X3) (x4 x2 + x3) (X1 +x3 + x4)
o= +x3)(x +x +X3)(+ X3+ x4)

Example 4.3

188 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

X1%2 X%

3% 00 01 11 10 3% 00 01 11 10

00 00
01 (1_?? 01__11 1 1|_
ull (@ 2 11__1J Lg_
10) 10)

(a) Optimal realization of f5 (b) Optimal realization of f,
F1%2 1%2

AN 00 01 11 10 TN 00 01 11 10
00 00

an ‘Dl
\an Nnmin
10) 10)

(c) Optimal realization of f; and f, together

(1_
1]

I

X —
x4_

/3

Ty
xy I
1
g —

By
-

S 4

L

(d) Combined circuit for /5 and f4

Figure 4.17 Another example of multiple-output synthesis.

4.6 MULTILEVEL SYNTHESIS

There are no common sum terms in these expressions that could be shared in the imple-
mentation. Moreover, from the Karnaugh maps in Figure 4.16, it is apparent that there is
no sum term (covering the cells where f; = f, = 0) that can be profitably used in realizing
both fi and f>. Thus the best choice is to implement each function separately, according to
the preceding expressions. Each function requires three OR gates, one AND gate, and 11
inputs. Therefore, the total cost of the circuit that implements both functions is 30. This
realization is costlier than the SOP realization derived in Example 4.1.

189

Consider now the POS realization of the functions f; and f4 in Figure 4.17. The minimum-
cost POS expressions for f3 and f; are

S5 = (3 +x4) O + x2) (X1 + x2) (X1 + x2)
Ja = (03 4+ x4) (02 + x4) (X1 + x4) (X1 + X2 + X4)

The first three sum terms are the same in both f3 and f4; they can be shared in a combined
circuit. These terms require three OR gates and six inputs. In addition, one 2-input OR
gate and one 4-input AND gate are needed for f3, and one 3-input OR gate and one 4-input
AND gate are needed for f;. Thus the combined circuit comprises five OR gates, two AND
gates, and 19 inputs, for a total cost of 26. This cost is slightly higher than the cost of the
circuit derived in Example 4.2.

Example 4.4

These examples show that the complexities of the best SOP or POS implementations
of given functions may be quite different. For the functions in Figures 4.16 and 4.17, the
SOP form gives better results. But if we are interested in implementing the complements
of the four functions in these figures, then the POS form would be less costly.

Sophisticated CAD tools used to synthesize logic functions will automatically perform
the types of optimizations illustrated in the preceding examples.

4.6 MULTILEVEL SYNTHESIS

In the preceding sections our objective was to find a minimum-cost sum-of-products or
product-of-sums realization of a given logic function. Logic circuits of this type have two
levels (stages) of gates. In the sum-of-products form, the first level comprises AND gates
that are connected to a second-level OR gate. In the product-of-sums form, the first-level OR
gates feed the second-level AND gate. We have assumed that both true and complemented
versions of the input variables are available so that NOT gates are not needed to complement
the variables.

Atwo-level realization is usually efficient for functions of a few variables. However, as
the number of inputs increases, a two-level circuit may result in fan-in problems. Whether

190 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

(from interconnection wires)

Part of a PAL-like block

Figure 4.18 Implementation in a CPLD.

or not this is an issue depends on the type of technology that is used to implement the circuit.
For example, consider the following function:

SO, X7) = X1X3X6 + X1 X4X5X6 + X2X3X7 + X2X4X5X7

This is a minimum-cost SOP expression. Now consider implementing f in two types of
PLDs: a CPLD and an FPGA. Figure 4.18 shows a part of one of the PAL-like blocks from
Figure 3.33. The figure indicates in blue the circuitry used to realize the function f. Clearly,
the SOP form of the function is well suited to the chip architecture of the CPLD.

Next, consider implementing f in an FPGA. For this example we will use the FPGA
shown in Figure 3.39, which contains two-input LUTs. Since the SOP expression for f
requires three- and four-input AND operations and a four-input OR, it cannot be directly
implemented in this FPGA. The problem is that the fan-in required to implement the function
is too high for our target chip architecture.

To solve the fan-in problem, f must be expressed in a form that has more than two levels
of logic operations. Such a form is called a multilevel logic expression. There are several
different approaches for synthesis of multilevel circuits. We will discuss two important
techniques known as factoring and functional decomposition.

4.6.1 FACTORING

The distributive property in section 2.5 allows us to factor the preceding expression for f
as follows

f = x1%6(x3 + x4x5) + X2%7(X3 + X4X5)

= (X1X6 + x2x7) (X3 + X4X5)

4.6 MULTILEVEL SYNTHESIS

Xy X5 X3 S/
| |
X X
0 x, 0 x, 0
0 4 Yo ¢ 1
1 L0 c 1
0 51 1
X X
X X
X X
X X
F A2 7
D
X7 *7 1 B 1 E 4

Figure 4.19 Implementation in an FPGA.

The corresponding circuit has a maximum fan-in of two; hence it can be realized using
two-input LUTs. Figure 4.19 gives a possible implementation using the FPGA from Figure
3.39. Note that a two-variable function that has to be realized by each LUT is indicated in
the box that represents the LUT.

Fan-in Problem

In the preceding example, the fan-in restrictions were caused by the fixed structure
of the FPGA, where each LUT has only two inputs. However, even when the target chip
architecture is not fixed, the fan-in may still be an issue. To illustrate this situation, let us
consider the implementation of a circuit in a custom chip. Recall that custom chips usually
contain a large number of gates. If the chip is fabricated using CMOS technology, then
there will be fan-in limitations as discussed in section 3.8.8. In this technology the number
of inputs to a logic gate should be small. For instance, we may wish to limit the number
of inputs to an AND gate to be less than five. Under this restriction, if a logic expression
includes a seven-input product term, we would have to use 2 four-input AND gates, as
indicated in Figure 4.20.

Factoring can be used to deal with the fan-in problem. Suppose again that the available
gates have a maximum fan-in of four and that we want to realize the function

f = x1X2x3X4X5X6 + X1X2X3X4X5X6

191

192

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

7 inputs

—)

Figure 4.20 Using four-input AND gates to realize a
seven-input product term.

X, —
X4 _}
Xg —

U

SIS

Figure 4.21 A factored circuit.

This is a minimal sum-of-products expression. Using the approach of Figure 4.20, we will
need four AND gates and one OR gate to implement this expression. A better solution is to
factor the expression as follows

S = x1X4x6 (X2x3X5 + X2X3X5)

Then three AND gates and one OR gate suffice for realization of the required function, as
shown in Figure 4.21.

Example 4.5

In practical situations a designer of logic circuits often encounters specifications that natu-
rally lead to an initial design where the logic expressions are in a factored form. Suppose
we need a circuit that meets the following requirements. There are four inputs: xi, x;, X3,
and x4. An output, f;, must have the value 1 if at least one of the inputs x; and x; is equal
to 1 and both x3 and x4 are equal to 1; it must also be 1 if x; = x, = 0 and either x3 or x4
is 1. In all other cases f; = 0. A different output, f>, is to be equal to 1 in all cases except
when both x; and x, are equal to 0 or when both x3 and x4 are equal to 0.

4.6 MULTILEVEL SYNTHESIS

M I

S

X3

>

x4—<

Figure 4.22 Circuit for Example 4.5.

From this specification, the function f] can be expressed as
Si = (a1 +x2)x3x4 + X1X2(xX3 + Xa)
This expression can be simplified to
S1 = x3x4 + X1 X2(x3 + x4)

which the reader can verify by using a Karnaugh map.
The second function, f>, is most easily defined in terms of its complement, such that

f_z = X1X2 + X3X4
Then using DeMorgan’s theorem gives
fo= (1 +x2) (3 + x4)

which is the minimum-cost expression for f,; the cost increases significantly if the SOP
form is used.

Because our objective is to design the lowest-cost combined circuit that implements f;
and f, it seems that the best result can be achieved if we use the factored forms for both
functions, in which case the sum term (x3 + x4) can be shared. Moreover, observing that
XX = X| + X5, the sum term (x| + x») can also be shared if we express f; in the form

Ji = x3%4 + X1 + x20x3 + x4)

Then the combined circuit, shown in Figure 4.22, comprises three OR gates, three AND
gates, one NOT gate, and 13 inputs, for a total of 20.

193

Impact on Wiring Complexity
The space on integrated circuit chips is occupied by the circuitry that implements logic
gates and by the wires needed to make connections among the gates. The amount of space

194

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

needed for wiring is a substantial portion of the chip area. Therefore, it is useful to keep
the wiring complexity as low as possible.

In a logic expression each literal corresponds to a wire in the circuit that carries the
desired logic signal. Since factoring usually reduces the number of literals, it provides a
powerful mechanism for reducing the wiring complexity in a logic circuit. In the synthesis
process the CAD tools consider many different issues, including the cost of the circuit, the
fan-in, and the wiring complexity.

4.6.2 FuNCTIONAL DECOMPOSITION

In the preceding examples, which illustrated the factoring approach, multilevel circuits
were used to deal with fan-in limitations. However, such circuits may be preferable to
their two-level equivalents even if fan-in is not a problem. In some cases the multilevel
circuits may reduce the cost of implementation. On the other hand, they usually imply
longer propagation delays, because they use multiple stages of logic gates. We will explore
these issues by means of illustrative examples.

Complexity of alogic circuit, in terms of wiring and logic gates, can often be reduced by
decomposing a two-level circuit into subcircuits, where one or more subcircuits implement
functions that may be used in several places to construct the final circuit. To achieve this
objective, a two-level logic expression is replaced by two or more new expressions, which
are then combined to define a multilevel circuit. We can illustrate this idea by a simple
example.

Example 4.6

Consider the minimum-cost sum-of-products expression
[= X1x0x3 + X1X2X3 + X1X2X4 + X1 X0X4

and assume that the inputs x; to x4 are available only in their true form. Then the expression
defines a circuit that has four AND gates, one OR gate, two NOT gates, and 18 inputs
(wires) to all gates. The fan-in is three for the AND gates and four for the OR gate. The
reader should observe that in this case we have included the cost of NOT gates needed to
complement x; and x,, rather than assume that both true and complemented versions of all
input variables are available, as we had done before.

Factoring x3 from the first two terms and x4 from the last two terms, this expression
becomes

[= (X1x2 + x1%2)x3 + (X120 + X1X2) x4
Now let g(x1, x2) = X1x2 + x1X, and observe that

g =X1X +x1X2
=X1X - X1 X2
= (x1 +X2) (X1 +x2)
= X1X] + X1X2 + XoX| + X2x2
=04+xx+Xx1x2+0

= x1X2 + X1 X2

4.6 MULTILEVEL SYNTHESIS

Then f can be written as
f=8x3+38x

which leads to the circuit shown in Figure 4.23. This circuit requires an additional OR gate
and a NOT gate to invert the value of g. But it needs only 15 inputs. Moreover, the largest
fan-in has been reduced to two. The cost of this circuit is lower than the cost of its two-level
equivalent. The trade-off is an increased propagation delay because the circuit has three
more levels of logic.

In this example the subfunction g is a function of variables x; and x,. The subfunction
is used as an input to the rest of the circuit that completes the realization of the required
function f. Let & denote the function of this part of the circuit, which depends on only three
inputs: g, x3, and x4. Then the decomposed realization of f can be expressed algebraically
as

fx1, x2, %3, x4) = hlg(x1, X2), X3, X4]

The structure of this decomposition can be described in block-diagram form as shown in
Figure 4.24.

195

. M} .

. -

Figure 4.23 Logic circuit for Example 4.6.

=D

X —

Xy —==

X3 —= h —— f

Xy —

Figure 4.24 The structure of decomposition in Example 4.6.

i v D

196

C

HAPTER 4 « OprPTiMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

While not evident from our first example, functional decomposition can lead to great
reductions in the complexity and cost of circuits. The reader will get a good indication of
this benefit from the next example.

Example 4.7

Figure 4.25a defines a five-variable function f in the form of a Karnaugh map. In searching
for a good decomposition for this function, it is necessary to first identify the variables that
will be used as inputs to a subfunction. We can get a useful clue from the patterns of 1s in
the map. Note that there are only two distinct patterns in the rows of the map. The second
and fourth rows have one pattern, highlighted in blue, while the first and third rows have
the other pattern. Once we specify which row each pattern is in, then the pattern itself

X
X

Xs

X3

X4

Figure 4.25

XXy X%
BN 00 01 11 10 TN 00 01 11 10
oof 1 00
01 RN R ol f2]2
1| 1 11
10 11|12 o112]2
x5 =0 x5 =1

EE N

(a) Karnaugh map for the function f

1/

{>O_r
amll

-

Y

) O

-

v

(b) Circuit obtained using decomposition

Decomposition for Example 4.7.

4.6 MULTILEVEL SYNTHESIS

depends only on the variables that define columns in each row, namely, x;, x,, and xs. Let
a subfunction g(x, x,, xs) represent the pattern in rows 2 and 4. This subfunction is just

g =x1+x2+ x5

because the pattern has a 1 wherever any of these variables is equal to 1. To specify
the location of rows where the pattern g occurs, we use the variables x3 and x4. The
terms X3x4 and x3x4 identify the second and fourth rows, respectively. Thus the expression
(X3x4 + x3X4) - g represents the part of f that is defined in rows 2 and 4.

Next, we have to find a realization for the pattern in rows 1 and 3. This pattern has a 1
only in the cell where x; = x, = x5 = 0, which corresponds to the term X X,x5. But we can
make a useful observation that this term is just a complement of g. The location of rows 1
and 3 is identified by terms x3X4 and x3x4, respectively. Thus the expression (X3X4 +Xx3%4) - g
represents f in rows 1 and 3.

We can make one other useful observation. The expressions (X3x4 + x3x4) and (X3X4 +
x3x4) are complements of each other, as shown in Example 4.6. Therefore, if we let
k(x3, x4) = X3x4 + x3%4, the complete decomposition of f can be stated as

fx1, x2, x3, X4, x5) = hlg(x1, X2, X5), k(x3, X4)]
= kg + kg
where g =Xx1+x2+ x5
k = X3x4 + X3X4
The resulting circuit is given in Figure 4.25b. It requires a total of 11 gates and 19 inputs.

The largest fan-in is three.
For comparison, a minimum-cost sum-of-products expression for f is

The corresponding circuit requires a total of 14 gates (including the five NOT gates to
complement the primary inputs) and 41 inputs. The fan-in for the output OR gate is eight.
Obviously, functional decomposition results in a much simpler implementation of this
function.

197

In both of the preceding examples, the decomposition is such that a decomposed sub-
function depends on some primary input variables, whereas the remainder of the imple-
mentation depends on the rest of the variables. Such decompositions are called disjoint
decompositions in the technical literature. It is possible to have a non-disjoint decomposi-
tion, where the variables of the subfunction are also used in realizing the remainder of the
circuit. The following example illustrates this possibility.

Exclusive-OR (XOR) is a very useful function. In section 3.9.1 we showed how it can be
realized using a special circuit. It can also be realized using AND and OR gates as shown

Example 4.8

198 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS
*2 }

(a) Sum-of-products implementation

’ -
T e
*2 }
(b) NAND gate implementation
; 3

(c) Optimal NAND gate implementation

Figure 4.26 Implementation of XOR.

in Figure 4.26a. In section 2.7 we explained how any AND-OR circuit can be realized as
a NAND-NAND circuit that has the same structure.

Let us now try to exploit functional decomposition to find a better implementation of
XOR using only NAND gates. Let the symbol 1 represent the NAND operation so that
x1 1 x; = X1 - 3. A sum-of-products expression for the XOR function is

X1 B xy = XxX1X2 + XX

4.6 MULTILEVEL SYNTHESIS

From the discussion in section 2.7, this expression can be written in terms of NAND
operations as

X1 ®@x2 = (x1 1 x2) 1T (11 x2)

This expression requires five NAND gates, and it is implemented by the circuit in Figure
4.26b. Observe that an inverter is implemented using a two-input NAND gate by tying the
two inputs together.

To find a decomposition, we can manipulate the term (x; 1 x,) as follows:

(11 x2) = (ax2) = (X1 +x2)) = (0 1 (1 +x2))

We can perform a similar manipulation for (x; 1 x,) to generate

X1 @x = (x1 T (X1 +x2)) 1 (x1+X2) 1 x2)
DeMorgan’s theorem states that X; 4+ X, = x; 1 x»; hence we can write

X1 @x2 = (11t (1) 1t (1 x2) 1 x2)
Now we have a decomposition

X @x=x 181 1Tx)
g=xi1x

The corresponding circuit, which requires only four NAND gates, is given in Figure 4.26¢.

199

Practical Issues

Functional decomposition is a powerful technique for reducing the complexity of cir-
cuits. It can also be used to implement general logic functions in circuits that have built-in
constraints. For example, in programmable logic devices (PLDs) that were introduced in
Chapter 3 it is necessary to “fit” a desired logic circuit into logic blocks that are available
on these devices. The available blocks are a target for decomposed subfunctions that may
be used to realize larger functions.

A big problem in functional decomposition is finding the possible subfunctions. For
functions of many variables, an enormous number of possibilities should be tried. This
situation precludes attempts at finding optimal solutions. Instead, heuristic approaches that
lead to acceptable solutions are used.

Full discussion of functional decomposition and factoring is beyond the scope of this
book. An interested reader may consult other references [2—5]. Modern CAD tools use the
concept of decomposition extensively.

4.6.3 MuLTILEVEL NAND AND NOR CIrcuITs

In section 2.7 we showed that two-level circuits consisting of AND and OR gates can be
easily converted into circuits that can be realized with NAND and NOR gates, using the
same gate arrangement. In particular, an AND-OR (sum-of-products) circuit can be realized

200

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

as a NAND-NAND circuit, while an OR-AND (product-of-sums) circuit becomes a NOR-
NOR circuit. The same conversion approach can be used for multilevel circuits. We will
illustrate this approach by an example.

Example 4.9

Figure 4.27a gives a four-level circuit consisting of AND and OR gates. Let us first derive
a functionally equivalent circuit that comprises only NAND gates. Each AND gate is
converted to a NAND by inverting its output. Each OR gate is converted to a NAND by
inverting its inputs. This is just an application of DeMorgan’s theorem, as illustrated in
Figure 2.21a. Figure 4.27b shows the necessary inversions in blue. Note that an inversion is
applied at both ends of a given wire. Now each gate becomes a NAND gate. This accounts
for most of the inversions added to the original circuit. But, there are still four inversions
that are not a part of any gate; therefore, they must be implemented separately. These
inversions are at inputs xi, x5, Xg, and x; and at the output f. They can be implemented as
two-input NAND gates, where the inputs are tied together. The resulting circuit is shown
in Figure 4.27c¢.

A similar approach can be used to convert the circuit in Figure 4.27a into a circuit that
comprises only NOR gates. An OR gate is converted to a NOR gate by inverting its output.
An AND becomes a NOR if its inputs are inverted, as indicated in Figure 2.21b. Using this
approach, the inversions needed for our sample circuit are shown in blue in Figure 4.28a.
Then each gate becomes a NOR gate. The three inversions at inputs x,, x3, and x4 can be
realized as two-input NOR gates, where the inputs are tied together. The resulting circuit
is presented in Figure 4.28b.

It is evident that the basic topology of a circuit does not change substantially when
converting from AND and OR gates to either NAND or NOR gates. However, it may be
necessary to insert additional gates to serve as NOT gates that implement inversions not
absorbed as a part of other gates in the circuit.

4.7 ANALYSIS OF MULTILEVEL CIRCUITS

The preceding section showed that it may be advantageous to implement logic functions
using multilevel circuits. It also presented the most commonly used approaches for syn-
thesizing functions in this way. In this section we will consider the task of analyzing an
existing circuit to determine the function that it implements.

For two-level circuits the analysis process is simple. If a circuit has an AND-OR
(NAND-NAND) structure, then its output function can be written in the SOP form by
inspection. Similarly, it is easy to derive a POS expression for an OR-AND (NOR-NOR)
circuit. The analysis task is more complicated for multilevel circuits because it is difficult to
write an expression for the function by inspection. We have to derive the desired expression
by tracing the circuit and determining its functionality. The tracing can be done either
starting from the input side and working towards the output, or by starting at the output side
and working back towards the inputs. At intermediate points in the circuit, it is necessary
to evaluate the subfunctions realized by the logic gates.

.

X3 =]

X4

X2

X3

Xq

Xs

X6

Xy

X

X3
X4

Xs

X6

4.,

Ly
D

(a) Circuit with AND and OR gates

1y
D

5

i

7 ANALYSIS OF MULTILEVEL CIRCUITS

)

_)M f

(b) Inversions needed to convert to NANDs

B,

Xs

FH

X6

FH

SfellS)e

Figure 4.27

i
)y
o —]

D=

Ba

(c) NAND-gate circuit

Conversion to a NAND-gate circuit.

Daribay

201

202 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

X1
X, 0—Q
X3 O—Q
Xs
X6
X7
(a) Inversions needed to convert to NORs
X1
X2
X3
ﬂ f
X4
Xs
X6
X7

(b) NOR-gate circuit

Figure 4.28 Conversion to a NOR-gate circuit.

Example 4.10 Figure 4.29 replicates the circuit from Figure 4.27a. To determine the function f imple-
mented by this circuit, we can consider the functionality at internal points that are the outputs
of various gates. These points are labeled P to Ps in the figure. The functions realized at
these points are

Py = xx3
Py = x5 + x¢

Py =x1 + P = x1 + x2x3

4.7 ANALYSIS OF MULTILEVEL CIRCUITS 203

Figure 4.29 Circuit for Example 4.10.

Py = x4Py = x4(x5 + X6)
Ps = Py + x7 = X4(X5 + X6) + X7
Then f can be evaluated as
S =P3Ps
= (x1 + x2x3) (X4 (x5 + X6) + X7)
Applying the distributive property to eliminate the parentheses gives
[= X1X4X5 + X1X4X6 + X1X7 + X2X3X4X5 + X2X3X4X6 + X2X3X7

Note that the expression represents a circuit comprising six AND gates, one OR gate, and
25 inputs. The cost of this two-level circuit is higher than the cost of the circuit in Figure
4.29, but the circuit has lower propagation delay.

In Example 4.7 we derived the circuit in Figure 4.25b. In addition to AND gates and OR Example 4.11
gates, the circuit has some NOT gates. It is reproduced in Figure 4.30, and the internal
points are labeled from P; to Py as shown. The following subfunctions occur

P] = X1 +X2 +XS

P, =2x4

P3 = X3

P4 :X3P2
Ps = x4P3
Ps = Py + Ps
P, =P

Pg = Ps

204

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

X, Py
N

4 375

Figure 4.30 Circuit for Example 4.11.

Py = P, Pg
Py = P;7Ps

We can derive f by tracing the circuit from the output towards the inputs as follows
f=Po+ Py
= P1P¢ + P7Pg
= (x1 + X2 + x5) (P4 + Ps) + P, Ps
= (X1 + %2 + x5) (x3P2 + x4P3) + X1 X2X5 P4 Ps
= (x1 + X2 + X5) (X3%4 + X4X3) + X1 XoX5 (X3 + P2) (X4 + P3)
= (X1 + x2 + x5) (x3X3 + X3x4) + X1X2X5 (X3 + x4) (X4 + X3)
= X1X3X4 + X1X3X4 + X20X3X4 + X0X3X4 + X5X3X4 + X5X3X4 +

This is the same expression as stated in Example 4.7.

Example 4.12

Circuits based on NAND and NOR gates are slightly more difficult to analyze because each
gate involves an inversion. Figure 4.31a depicts a simple NAND-gate circuit that illustrates
the effect of inversions. We can convert this circuit into a circuit with AND and OR gates
using the reverse of the approach described in Example 4.9. Bubbles that denote inversions
can be moved, according to DeMorgan’s theorem, as indicated in Figure 4.315. Then the
circuit can be converted into the circuit in part (c¢) of the figure, which consists of AND and

4.7 ANALYSIS OF MULTILEVEL CIRCUITS

Xz P2
X3 DD—L P3
X4 }1
D
Xs
(a) NAND-gate circuit
X
)
X3
X4
f
Xs
(b) Moving bubbles to convert to ANDs and ORs
X1
X2

215

Xq

_ f
X5

(c) Circuit with AND and OR gates

Figure 4.31 Circuit for Example 4.12.

OR gates. Observe that in the converted circuit, the inputs x3 and x5 are complemented.
From this circuit the function f is determined as

f = (ixo +X3)x4 + Xs
= X1X2X4 + X3X4 + X5

It is not necessary to convert a NAND circuit into a circuit with AND and OR gates
to determine its functionality. We can use the approach from Examples 4.10 and 4.11 to

205

206 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

derive f as follows. Let P, P,, and P3 label the internal points as shown in Figure 4.31a.

Then
Py =x1x;
Py =Pix;
P3 = Pyxy
f =Psxs =P3+7%;s

= Poxs + X5 = Poxy + s

= Pix3xy + X5 = (Py +X3)x4 + X5
= (XX + X3)x4 + X5

= (x1x2 + X3)X4 + X5

= X1X2X4 + X3X4 + X5

Example 4.13 The circuit in Figure 4.32 consists of NAND and NOR gates. It can be analyzed as follows.
Py =23
Py =xP| =% + P
P3 =X3x4 = X3 + X4
Py=P,+P;3
f =Py + x5 = PuXs

=P, + P3-Xs

X

X3

Figure 4.32 Circuit for Example 4.13.

4.8 CuBICAL REPRESENTATION

= (P2 + P3)Xs
= (X1 + Py + X3 + X4)Xs
= (X1 + x2x3 + X3 + X4)X5
= (X1 +x2 + X3 + X4)X5
= X1X5 + X2Xs5 + X3X5 + X4X5
Note that in deriving the second to the last line, we used property 16a in section 2.5 to
simplify x,x3 + X3 into xp + X3.

Analysis of circuits is much simpler than synthesis. With a little practice one can
develop an ability to easily analyze even fairly complex circuits.

207

We have now covered a considerable amount of material on synthesis and analysis of
logic functions. We have used the Karnaugh map as a vehicle for illustrating the concepts
involved in finding optimal implementations of logic functions. We have also shown that
logic functions can be realized in a variety of forms, both with two levels of logic and
with multiple levels. In a modern design environment, logic circuits are synthesized using
CAD tools, rather than by hand. The concepts that we have discussed in this chapter are
quite general; they are representative of the strategies implemented in CAD algorithms.
As we have said before, the Karnaugh map scheme for representing logic functions is not
appropriate for use in CAD tools. In the next section we discuss an alternative representation
of logic functions, which is suitable for use in CAD algorithms.

4.8 CUBICAL REPRESENTATION

The Karnaugh map is an excellent vehicle for illustrating concepts, and it is even useful for
manual design if the functions have only a few variables. To deal with larger functions it is
necessary to have techniques that are algebraic, rather than graphical, which can be applied
to functions of any number of variables.

Many algebraic optimization techniques have been developed. We will not pursue these
techniques in great detail, but we will attempt to provide the reader with an appreciation
of the tasks involved. This helps in gaining an understanding of what the CAD tools can
do and what results can be expected from them. The approaches that we will present make
use of a cubical representation of logic functions.

4.8.1 CuBES AND HYPERCUBES

So far in this book, we have encountered four different forms for representing logic func-
tions: truth tables, algebraic expressions, Venn diagrams, and Karnaugh maps. Another
possibility is to map a function of n variables onto an n-dimensional cube.

208

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

Two-Dimensional Cube

A two-dimensional cube is shown in Figure 4.33. The four corners in the cube are
called vertices, which correspond to the four rows of a truth table. Each vertex is identified
by two coordinates. The horizontal coordinate is assumed to correspond to variable x, and
vertical coordinate to x,. Thus vertex 00 is the bottom-left corner, which corresponds to
row 0 in the truth table. Vertex 01 is the top-left corner, where x; = 0 and x, = 1, which
corresponds to row 1 in the truth table, and so on for the other two vertices.

We will map a function onto the cube by indicating with blue circles those vertices for
which f = 1. In Figure 4.33 f = 1 for vertices 01, 10, and 11. We can express the function
as a set of vertices, using the notation f = {01, 10, 11}. The function f is also shown in
the form of a truth table in the figure.

An edge joins two vertices for which the labels differ in the value of only one variable.
Therefore, if two vertices for which f = 1 are joined by an edge, then this edge represents
that portion of the function just as well as the two individual vertices. For example, f = 1
for vertices 10 and 11. They are joined by the edge that is labeled 1x. Itis customary to use
the letter x to denote the fact that the corresponding variable can be either 0 or 1. Hence 1x
means that x; = 1, while x, can be either 0 or 1. Similarly, vertices O1 and 11 are joined
by the edge labeled x1, indicating that x; can be either O or 1, but x, = 1. The reader must
not confuse the use of the letter x for this purpose, in contrast to the subscripted use where
x1 and x, refer to the variables.

Two vertices being represented by a single edge is the embodiment of the combining
property 14a from section 2.5. The edge 1x is the logical sum of vertices 10 and 11. It
essentially defines the term x;, which is the sum of minterms x;X, and x;x,. The property
14a indicates that

X1 X2 + X1 X2 = X1

Therefore, finding edges for which f = 1 is equivalent to applying the combining property.
Of course, this is also analogous to finding pairs of adjacent cells in a Karnaugh map for
which f = 1.
The edges 1x and x1 define fully the function in Figure 4.33; hence we can represent
the function as f = {1x, x1}. This corresponds to the logic expression
f=x+x

which is also obvious from the truth table in the figure.

X
L xl

Figure 4.33 Representation of f (x;, x;) = Y m(1,2, 3).

1x

0
0
1
1

_ O - O
=)

00 10

4.8 CuBICAL REPRESENTATION

011 111
x10
010 110
xx0
. 0x0 1x0
2 001 101
X3
10x
X
000 x00 100

Figure 4.34 Representation of f(x;, x,, x3) = Y- m(0, 2,4, 5, 6).

Three-Dimensional Cube

Figure 4.34 illustrates a three-dimensional cube. The x, x,, and x3 coordinates are as
shown on the left. Each vertex is identified by a specific valuation of the three variables.
The function f mapped onto the cube is the function from Figure 4.1, which was used in
Figure 4.5b. There are five vertices for which f = 1, namely, 000, 010, 100, 101, and
110. These vertices are joined by the five edges shown in blue, namely, x00, 0x0, x10, 1x0,
and 10x. Because the vertices 000, 010, 100, and 110 include all valuations of x; and x»,
when x3 is 0, they can be specified by the term xx0. This term means that f = 1 ifx3 =0,
regardless of the values of x; and x,. Notice that xx0 represents the front side of the cube,
which is shaded in blue.

From the preceding discussion it is evident that the function f can be represented in
several ways. Some of the possibilities are

f = {000, 010, 100, 101, 110}

= {0x0, 1x0, 101}

= {x00, x10, 101}

= {x00, x10, 10x}

= {xx0, 10x}
In a physical realization each of the above terms is a product term implemented by an
AND gate. Obviously, the least-expensive circuit is obtained if f = {xx0, 10x}, which is
equivalent to the logic expression

f=x+xx

This is the expression that we derived using the Karnaugh map in Figure 4.5b.

Four-Dimensional Cube

Graphical images of two- and three-dimensional cubes are easy to draw. A four-
dimensional cube is more difficult. It consists of 2 three-dimensional cubes with their

209

210

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

corners connected. The simplest way to visualize a four-dimensional cube is to have one
cube placed inside the other cube, as depicted in Figure 4.35. We have assumed that the xi,
X7, and x3 coordinates are the same as in Figure 4.34, while x4 = 0 defines the outer cube
and x4, = 1 defines the inner cube. Figure 4.35 indicates how the function f; of Figure 4.7
is mapped onto the four-dimensional cube. To avoid cluttering the figure with too many
labels, we have labeled only those vertices for which f3 = 1. Again, all edges that connect
these vertices are highlighted in blue.

There are two groups of four adjacent vertices for which f3 = 1 that can be represented
as planes. The group comprising 0000, 0010, 1000, and 1010 is represented by x0x0. The
group 0010, 0011, 0110, and 0111 is represented by Ox1x. These planes are shaded in the
figure. The function f3 can be represented in several ways, for example

f3 = {0000, 0010, 0011, 0110, 0111, 1000, 1010, 1111}
= {00x0, 10x0, 0x10, Ox11, x111}
= {x0x0, Ox1x, x111}

Since each x indicates that the corresponding variable can be ignored, because it can be
either O or 1, the simplest circuit is obtained if f = {x0x0, Ox1x, x111}, which is equivalent

0110
0x1x
x111
0111 1111
0011
1010
0010 XOXO0
0000 1000

Figure 4.35 Representation of function f; from Figure 4.7.

4.9 A TABULAR METHOD FOR MINIMIZATION

to the expression
3 =X0X4 +X1X3 + X2X3%4
We derived the same expression in Figure 4.7.

n-Dimensional Cube

A function that has n variables can be mapped onto an n-dimensional cube. Although
it is impractical to draw graphical images of cubes that have more than four variables, it
is not difficult to extend the ideas introduced above to a general n-variable case. Because
visual interpretation is not possible and because we normally use the word cube only for
a three-dimensional structure, many people use the word hypercube to refer to structures
with more than three dimensions. We will continue to use the word cube in our discussion.

It is convenient to refer to a cube as being of a certain size that reflects the number of
vertices in the cube. Vertices have the smallest size. Each variable has a value of 0 or 1 in
a vertex. A cube that has an x in one variable position is larger because it consists of two
vertices. For example, the cube 1x01 consists of vertices 1001 and 1101. A cube that has
two x’s consists of four vertices, and so on. A cube that has k x’s consists of 2¢ vertices.

An n-dimensional cube has 2" vertices. Two vertices are adjacent if they differ in the
value of only one coordinate. Because there are n coordinates (axes in the n-dimensional
cube), each vertex is adjacent to n other vertices. The n-dimensional cube contains cubes of
lower dimensionality. Cubes of the lowest dimension are vertices. Because their dimension
is zero, we will call them O-cubes. Edges are cubes of dimension 1; hence we will call them
1-cubes. A side of a three-dimensional cube is a 2-cube. An entire three-dimensional cube
is a 3-cube, and so on. In general, we will refer to a set of 2k adjacent vertices as a k-cube.

From the examples in Figures 4.34 and 4.35, it is apparent that the largest possible
k-cubes that exist for a given function are equivalent to its prime implicants. Next, we will
discuss minimization techniques that use the cubical representation of functions.

211

4.9 A TABULAR METHOD FOR MINIMIZATION

Cubical representation of logic functions is well suited for implementation of minimization
algorithms that can be programmed and run efficiently on computers. Such algorithms
are included in modern CAD tools. While the CAD tools can be used effectively without
detailed knowledge of how their minimization algorithms are implemented, the reader may
find it interesting to gain some insight into how this may be accomplished. In this section
we will describe a relatively simple tabular method, which illustrates the main concepts
and indicates some of the problems that arise.

A tabular approach for minimization was proposed in the 1950s by Willard Quine [6]
and Edward McCluskey [7]. It became popular under the name Quine-McCluskey method.
While it is not efficient enough to be used in modern CAD tools, it is a simple method that
illustrates the key issues. We will present it using the cubical notation discussed in sec-
tion 4.8.

212

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

4.9.1 GENERATION OF PRIME IMPLICANTS

As mentioned in section 4.8, the prime implicants of a given logic function f are the largest
possible k-cubes for which f = 1. For incompletely specified functions, which include
a set of don’t-care vertices, the prime implicants are the largest k-cubes for which either
f = 1or f is unspecified.

Assume that the initial specification of f is given in terms of minterms for which f = 1.
Also, let the don’t-cares be specified as minterms. This allows us to create a list of vertices
for which either f = 1 or it is a don’t-care condition. We can compare these vertices in
pairwise fashion to see if they can be combined into larger cubes. Then we can attempt to
combine these new cubes into still larger cubes and continue the process until we find the
prime implicants.

The basis of the method is the combining property of Boolean algebra

)C,')Cj + xi)_cj = X

which we used in section 4.8 to develop the cubical representation. If we have two cubes
that are identical in all variables (coordinates) except one, for which one cube has the value
0 and the other has 1, then these cubes can be combined into a larger cube. For example,
consider f(xi, ..., x4) = {1000, 1001, 1010, 1011}. The cubes 1000 and 1001 differ only
in variable x4; they can be combined into a new cube 100x. Similarly, 1010 and 1011 can be
combined into 101x. Then we can combine 100x and 101x into a larger cube 10xx, which
means that the function can be expressed simply as f = x| X,.

Figure 4.36 shows how we can generate the prime implicants for the function, f, in
Figure 4.11. The function is defined as

fOx) =) m(0,4,8,10,11,12, 13, 15)

There are no don’t-care conditions. Since larger cubes can be generated only from the
minterms that differ in just one variable, we can reduce the number of pairwise comparisons
by placing the minterms into groups such that the cubes in each group have the same number

List 1 List 2 List 3
0 0000 | Vv 04 | 0xXx00 |V 0,4,8,12 Xxx00
0,8 x 000 v
4 0100 |V
8 1000 | Vv 810 | 1 0 x O
412 | x 1 00 v
10 1010 (v 812 | 1 x 00 v
12 1100 | Vv
10,1111 0 1 x
11 1011 | v 12,131 1 1 0 x
13 1101 v
11,151 1 x 1 1
15 1111V 13,151 11 x 1

Figure 4.36 Generation of prime implicants for the function in Figure 4.11.

4.9 A TABULAR METHOD FOR MINIMIZATION

of 1s, and sort the groups by the number of 1s. Thus, it will be necessary to compare each
cube in a given group only with all cubes in the immediately preceding group. In Figure
4.36, the minterms are ordered in this way in list 1. (Note that we indicated the decimal
equivalents of the minterms as well, to facilitate our discussion.) The minterms, which are
also called O-cubes as explained in section 4.8, can be combined into 1-cubes shown in list 2.
To make the entries easily understood we indicated the minterms that are combined to form
each 1-cube. Next, we check if the O-cubes are included in the 1-cubes and place a check
mark beside each cube that is included. We now generate 2-cubes from the 1-cubes in list
2. The only 2-cube that can be generated is xx00, which is placed in list 3. Again, the check
marks are placed against the 1-cubes that are included in the 2-cube. Since there exists just
one 2-cube, there can be no 3-cubes for this function. The cubes in each list without a check
mark are the prime implicants of f. Therefore, the set, P, of prime implicants is

P = {10x0, 101x, 110x, 1x11, 11x1, xx00}
= {p1, D2, P3, P4, P5, D6}

4.9.2 DETERMINATION OF A MINIMUM COVER

Having generated the set of all prime implicants, it is necessary to choose a minimum-cost
subset that covers all minterms for which f = 1. As a simple measure we will assume that
the cost is directly proportional to the number of inputs to all gates, which means to the
number of literals in the prime implicants chosen to implement the function.

To find a minimum-cost cover, we construct a prime implicant cover table in which there
is a row for each prime implicant and a column for each minterm that must be covered.
Then we place check marks to indicate the minterms covered by each prime implicant.
Figure 4.37a shows the table for the prime implicants derived in Figure 4.36. If there is a
single check mark in some column of the cover table, then the prime implicant that covers
the minterm of this column is essential and it must be included in the final cover. Such
is the case with pg, which is the only prime implicant that covers minterms 0 and 4. The
next step is to remove the row(s) corresponding to the essential prime implicants and the
column(s) covered by them. Hence we remove pg and columns 0, 4, 8, and 12, which leads
to the table in Figure 4.37b.

Now, we can use the concept of row dominance to reduce the cover table. Observe
that p; covers only minterm 10 while p, covers both 10 and 11. We say that p, dominates
p1. Since the cost of p, is the same as the cost of py, it is prudent to choose p, rather than
P1, so we will remove p; from the table. Similarly, ps dominates p3, hence we will remove
p3 from the table. Thus, we obtain the table in Figure 4.37¢. This table indicates that we
must choose p, to cover minterm 10 and ps to cover minterm 13, which also takes care of
covering minterms 11 and 15. Therefore, the final cover is

C = {p2, ps, P}
= {101x, 11x1, xx00}

213

214 CHAPTER 4 + OpTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS
Prime Minterm
implicant 0 4 8 10 11 12 13 15
P =10x0 v v
P =101x v v
pP3 = 110X v v
Py =1x11 v v
Ps =11x1 v v
Pg=xx00|v v V v

(a) Initial prime implicant cover table

Prime Minterm
implicant 10 11 13 15
Py v
P2 v v
P3 v
P4 v v
Ps vV oV

(b) After the removal of essential prime implicants

Prime Minterm
implicant 10 11 13 15
P v Vv
Py v v
Ps v v

(c) After the removal of dominated rows

re 4.37

Selection of a cover for the function in Figure 4.11.

which means that the minimum-cost implementation of the function is

f = x1X2x3 + X1X2X4 + X3X4

This is the same expression as the one derived in section 4.2.2.

In this example we used the concept of row dominance to reduce the cover table. We
removed the dominated rows because they cover fewer minterms and the cost of their prime

4.9 A TABULAR METHOD FOR MINIMIZATION

implicants is the same as the cost of the prime implicants of the dominating rows. However,
a dominated row should not be removed if the cost of its prime implicant is less than the
cost of the dominating row’s prime implicant. An example of this situation can be found in
problem 4.25.

The tabular method can be used with don’t-care conditions as illustrated in the following
example.

215

The don’t-care minterms are included in the initial list in the same way as the minterms for
which f = 1. Consider the function

fxr, ..., x) = Zm(O, 2,5,6,7,8,9,13) + D(1, 12, 15)

We encourage the reader to derive a Karnaugh map for this function as an aid in visual-
izing the derivation that follows. Figure 4.38 depicts the generation of prime implicants,
producing the result

P = {00x0, 0x10, 011x, x00x, xx01, 1x0x, x1x1}
= {p1, P2, P3, P4, P5. P6> P7}

The initial prime implicant cover table is shown in Figure 4.39a. The don’t-care
minterms are not included in the table because they do not have to be covered. There are no
essential prime implicants. Examining this table, we see that column 8 has check marks in
the same rows as column 9. Moreover, column 9 has an additional check mark in row ps.
Hence column 9 dominates column 8. We refer to this as the concept of column dominance.
When one column dominates another, we can remove the dominating column, which is

List 1 List 2 List 3

0,1
0,2
0,8

15

2,6

1,9

8,9
8,12

4 0,1,8,9 x 00 x

1,5,9,13 xx01
8,912,413 | 1 x 0 x

57,1315 | x 1 x 1

©O© oo 01l oo | O
X O O X X (e Ne o]

OO0 oOopro|loxo
OX P oOor |[oOoXx
<

< << <

5,7

6,7
5,13
9,13
12,13

7,15
1315 | 1

PO|Rr PrOoOO|RrPOO|O
PR|lFPrRr|Pr oRrRPRr|OOO| O

or|loopro|oro|o
R|lrRrrloror |[cor | o

13
15

[y

[N
AN U N N N N RN

= = X oo = P X oo | X oo

X P P X

=
PRk, X PFPPRPPR

X Rr| OO O X
K< << <

N

Figure 4.38 Generation of prime implicants for the function in Example 4.14.

Example 4.14

216

CHAPTER 4

OpPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

(c) After the removal of rows ps and pg

Figure 4.39

(d) After including p4 and p5

in the cover

Selection of a cover for the function in Example 4.14.

Prime Minterm
implicant 0 2 5 6 7 8 9 13
Py =00x0 v Vv
Py =0x10 4 4
Py = 011x v v
Py = x 00 X v v v
Ps = xx01 v v Vv
Pe = 1 x0x v Vv v
p; = x1x1 v v v
(a) Initial prime implicant cover table
Prime Minterm
implicant 0 2 5 6 7 8
Pr=00x0 v v
P, =0x10 4 4
P33 = 011X v v
Py = x 00 x v v
Ps = xx 01 v
Pg =1 x 0 X v
p7; = x1x1 v v
(b) After the removal of columns 9 and 13
Prime Minterm
implicant 0 2 5 6 7 8 Prime Minterm
2 v v implicant 2 6
) v Vv P v
P3 v v P v v
Py v 4 P3 v
P v v

4.9 A TABULAR METHOD FOR MINIMIZATION

column 9 in this case. Note that this is in contrast to rows where we remove dominated
(rather than dominating) rows. The reason is that when we choose a prime implicant to
cover the minterm that corresponds to the dominated column, this prime implicant will
also cover the minterm corresponding to the dominating column. In our example, choosing
either p4 or pg covers both minterms 8 and 9. Similarly, column 13 dominates column 5,
hence column 13 can be deleted.

After removing columns 9 and 13, we obtain the reduced table in Figure 4.39b. In
this table row p4 dominates pg and row p; dominates ps. This means that ps and pg can be
removed, giving the table in Figure 4.39c. Now, p4 and p; are essential to cover minterms 8
and 5, respectively. Thus, the table in Figure 4.394 is obtained, from which it is obvious that
P> covers the remaining minterms 2 and 6. Note that row p, dominates both rows p; and p;.

The final cover is

C = {p2, ps, p7}
= {0x10, x00x, x1x1}

and the function is implemented as

[= X1x3%4 4 XoX3 + XoX4

217

In Figures 4.37 and 4.39, we used the concept of row and column dominance to reduce
the cover table. This is not always possible, as illustrated in the following example.

Consider the function
fOx) =) m(0,3,10,15) + D(1,2,7,8, 11, 14)
The prime implicants for this function are

P = {00xx, x0x0, x01x, xx11, 1x1x}
= {p1, P2, D3, P4, Ps)

The initial prime implicant cover table is shown in Figure 4.40a. There are no essential prime
implicants. Also, there are no dominant rows or columns. Moreover, all prime implicants
have the same cost because each of them is implemented with two literals. Thus, the table
does not provide any clues that can be used to select a minimum-cost cover.

A good practical approach is to use the concept of branching, which was introduced
in section 4.2.2. We can choose any prime implicant, say ps, and first choose to include
this prime implicant in the final cover. Then we can determine the rest of the final cover in
the usual way and compute its cost. Next we try the other possibility by excluding p3 from
the final cover and determine the resulting cost. We compare the costs and choose the less
expensive alternative.

Figure 4.40b gives the cover table that is left if p; is included in the final cover. The
table does not include minterms 3 and 10 because they are covered by p3. The table indicates

Example 4.15

218

CHAPTER 4

e OpTmMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

Prime Minterm
implicant 0 3 10 15
Py =00 x X v Vv
Py =x0x0 4 4
P3; = x01x v v
Py = xx1l1 v 4
Ps = 1x1x v Vv

(a) Initial prime implicant cover table

Prime Minterm
implicant 0 15
P v
Py v
Py v
Ps v

(b) After including p5 in the cover

Prime Minterm
implicant 0 3 10 15
Py VA
P v v
Py v 4
Ps v Vv

(c) After excluding p; from the cover

Selection of a cover for the function in
Example 4.15.

Figure 4.40

that a complete cover must include either p; or p; to cover minterm O and either p4 or ps to
cover minterm 15. Therefore, a complete cover can be

C = {p1,p3,p4)

The alternative of excluding p3 leads to the cover table in Figure 4.40c. Here, we see that
a minimum-cost cover requires only two prime implicants. One possibility is to choose p;

4.9 A TABULAR METHOD FOR MINIMIZATION

and ps. The other possibility is to choose p; and p4. Hence a minimum-cost cover is just

Chin = {PI»PS}
= {00xx, 1x1x}

The function is realized as

[=X1%+x1x3

219

4.9.3 SUMMARY OF THE TABULAR METHOD

The tabular method can be summarized as follows:

1. Starting with a list of cubes that represent the minterms where f = 1 or a don’t-care
condition, generate the prime implicants by successive pairwise comparisons of the
cubes.

2. Derive a cover table which indicates the minterms where f = 1 that are covered by
each prime implicant.

3. Include the essential prime implicants (if any) in the final cover and reduce the table
by removing both these prime implicants and the covered minterms.

4. Use the concept of row and column dominance to reduce the cover table further. A
dominated row is removed only if the cost of its prime implicant is greater than or
equal to the cost of the dominating row’s prime implicant.

5. Repeat steps 3 and 4 until the cover table is either empty or no further reduction of
the table is possible.

6. If the reduced cover table is not empty, then use the branching approach to determine
the remaining prime implicants that should be included in a minimum cost cover.

The tabular method illustrates how an algebraic technique can be used to generate the
prime implicants. It also shows a simple approach for dealing with the covering problem,
to find a minimum-cost cover. The method has some practical limitations. In practice,
functions are seldom defined in the form of minterms. They are usually given either in the
form of algebraic expressions or as sets of cubes. The need to start the minimization process
with a list of minterms means that the expressions or sets have to be expanded into this
form. This list may be very large. As larger cubes are generated, there will be numerous
comparisons performed and the computation will be slow. Using the cover table to select
the optimal set of prime implicants is also computationally intensive when large functions
are involved.

Many algebraic techniques have been developed, which aim to reduce the time that it
takes to generate the optimal covers. While most of these techniques are beyond the scope
of this book, we will briefly discuss one possible approach in the next section. A reader who
intends to use the CAD tools, but is not interested in the details of automated minimization,
may skip this section without loss of continuity.

220

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

4.10 A CuBicAL TECHNIQUE FOR MINIMIZATION

Assume that the initial specification of a function f is given in terms of implicants that are not
necessarily either minterms or prime implicants. Then it is convenient to define an operation
that will generate other implicants that are not given explicitly in the initial specification,
but which will eventually lead to the prime implicants of f. One such possibility is known
as the x-product operation, which is usually pronounced the “star-product” operation. We
will refer to it simply as the x-operation.

x-Operation

The *-operation provides a simple way of deriving a new cube by combining two cubes
that differ in the value of only one variable. Let A = AjA,---A, and B = B|B,--- B, be
two cubes that are implicants of an n-variable function. Thus each coordinate A; and B;
is specified as having the value 0, 1, or x. There are two distinct steps in the x-operation.
First, the x-operation is evaluated for each pair A; and B;, in coordinates i = 1,2, ..., n,
according to the table in Figure 4.41. Then based on the results of using the table, a set of
rules is applied to determine the overall result of the x-operation. The table in Figure 4.41
defines the coordinate *-operation, A; x B;. It specifies the result of A; % B; for each possible
combination of values of A; and B;. This result is the intersection (i.e., the common part)
of A and B in this coordinate. Note that when A; and B; have the opposite values (0 and 1,
or vice versa), the result of the coordinate x-operation is indicated by the symbol g. We say
that the intersection of A; and B; is empty. Using the table, the complete x-operation for A
and B is defined as follows:

C = A % B, such that

1. C=gif A; * B; = ¢ for more than one i.

2. Otherwise, C; = A; x B; when A; * B; # @, and C; = x for the coordinate where
Ai * B,' = @.

For example, let A = {Ox0} and B = {111}. ThenA; *B; =0x1 =¢,A,xB, = xx1 =1,
and A3;xB3 = 0x1 = @. Because the result is ¢ in two coordinates, it follows from condition
1 that A x B = @. In other words, these two cubes cannot be combined into another cube,
because they differ in two coordinates.

As another example, consider A = {11x} and B = {10x}. Inthiscase A; *B; = 1% 1 =
1,Ay B, = 1%0 =¢,and A3 x B3 = X % X = X. According to condition 2 above, C| = 1,

Figure 4.41 The coordinate *-operation.

4.10 A CuUBICAL TECHNIQUE FOR MINIMIZATION

C, =x, and C3 = x, which gives C = A * B = {1xx}. A larger 2-cube is created from two
1-cubes that differ in one coordinate only.

The result of the x-operation may be a smaller cube than the two cubes involved in the
operation. Consider A = {1x1} and B = {l1x}. Then C = A % B = {111}. Notice that C
is included in both A and B, which means that this cube will not be useful in searching for
prime implicants. Therefore, it should be discarded by the minimization algorithm.

As a final example, consider A = {x10} and B = {Ox1}. Then C = A % B = {01x}. All
three of these cubes are the same size, but C is not included in either A or B. Hence C has
to be considered in the search for prime implicants. The reader may find it helpful to draw
a Karnaugh map to see how cube C is related to cubes A and B.

Using the x-Operation to Find Prime Implicants

The essence of the x-operation is to find new cubes from pairs of existing cubes. In
particular, it is of interest to find new cubes that are not included in the existing cubes. A
procedure for finding the prime implicants may be organized as follows.

Suppose that a function f is specified by means of a set of implicants that are represented
as cubes. Let this set be denoted as the cover C¥ of f. Let ¢’ and ¢/ be any two cubes in
C*. Then apply the *-operation to all pairs of cubes in C¥; let G**! be the set of newly
generated cubes. Hence

Gl = ¢l % ¢ forall ¢, dde C*

Now a new cover for f may be formed by using the cubes in C* and G¥*!. Some of these
cubes may be redundant because they are included in other cubes; they should be removed.
Let the new cover be

C*! = c* U G**! — redundant cubes

where U denotes the logical union of two sets, and the minus sign (—) denotes the removal
of elements of a set. If C¥*! £ C*, then a new cover C¥*? is generated using the same
process. If C¥*! = C*, then the cubes in the cover are the prime implicants of f. For an
n-variable function, it is necessary to repeat the step at most n times.

Redundant cubes that have to be removed are identified through pairwise comparison
of cubes. Cube A = A|A, ---A, should be removed if it is included in some cube B =
B|B; - - - B, which is the case if A; = B; or B; = x for every coordinate i.

221

Consider the function f (x1, x», x3) of Figure 4.9. Assume that f is initially specified as a set
of vertices that correspond to the minterms, mg, m;, m,, ms, and my. Hence let the initial
cover be C° = {000, 001, 010, O11, 111}. Using the *x-operation to generate a new set of
cubes, we obtain G' = {00x, 0x0, Ox1, 01x, x11}. Then C!' = C° U G' - redundant cubes.
Observe that each cube in C? is included in one of the cubes in G'; therefore, all cubes in
CY are redundant. Thus C! = G'.

The next step is to apply the *-operation to the cubes in C', which yields G*> = {000,
001, Oxx, Ox1, 010, 01x, 011}. Note that all of these cubes are included in the cube 0xx;

Example 4.16

222

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

therefore, all but Oxx are redundant. Now it is easy to see that

C? = C!' U G? - redundant terms
= {x11, Oxx}

since all cubes of C!, except x11, are redundant because they are covered by 0xx.
Applying the *-operation to C? yields G* = {011} and

C3 = C? U G? - redundant terms
= {x11, Oxx}

Since C* = C?, the conclusion is that the prime implicants of f are the cubes {x11, 0xx},
which represent the product terms x,x3 and X;. This is the same set of prime implicants that
we derived using a Karnaugh map in Figure 4.9.

Observe that the derivation of prime implicants in this example is similar to the tabular
method explained in section 4.9 because the starting point was a function, f, given as a set
of minterms.

Example 4.17

As another example, consider the four-variable function of Figure 4.10. Assume that this
function is initially specified as the cover C° = {0101, 1101, 1110, 011x, x01x}. Then
successive applications of the x-operation and removing the redundant terms gives

C! = {x01x, x101, 01x1, x110, 1x10, Ox1x}

C? = {x01x, x101, 01x1, Ox1x, xx10}

c=c?

Therefore, the prime implicants are X,x3, XpX3X4, X1 X2X4, X1X3, and x3Xy4.

4.10.1 DETERMINATION OF ESSENTIAL PRIME IMPLICANTS

From a cover that consists of all prime implicants, it is necessary to extract a minimal
cover. As we saw in section 4.2.2, all essential prime implicants must be included in the
minimal cover. To find the essential prime implicants, it is useful to define an operation
that determines a part of a cube (implicant) that is not covered by another cube. One such
operation is called the #-operation (pronounced the “sharp operation”), which is defined as
follows.

#-Operation

Again, let A = AjAy---A, and B = B1B;--- B, be two cubes (implicants) of an
n-variable function. The sharp operation A#B leaves as a result “that part of A that is
not covered by B.” Similar to the x-operation, the #-operation has two steps: A#B; is
evaluated for each coordinate i, and then a set of rules is applied to determine the overall

4.10 A CuUBICAL TECHNIQUE FOR MINIMIZATION

Figure 4.42 The coordinate #-operation.

result. The sharp operation for each coordinate is defined in Figure 4.42. After this operation
is performed for all pairs (A;, B;), the complete #-operation is defined as follows:

C = A#B, such that

. C=AifA#B; = ¢ for some i.
2. C=g¢if A#B; = ¢ for all i.

Otherwise, C = Ui(Al, Ay, ..., Bi, ... ,A,) , where the union is for all i for which
A; =x and B; # x.

The first condition corresponds to the case where cubes A and B do not intersect at all;
namely, A and B differ in the value of at least one variable, which means that no part of A
is covered by B. For example, let A = Ox1 and B = 11x. The coordinate #-products are
A1#B; = ¢, Ay#B, = 0, and A3#B3 = ¢. Then from rule 1 it follows that Ox1 # 11x =
Ox1. The second condition reflects the case where A is fully covered by B. For example,
0x1 # Oxx = @. The third condition is for the case where only a part of A is covered by
B. In this case the #-operation generates one or more cubes. Specifically, it generates one
cube for each coordinate i that is x in A;, but is not x in B;. Each cube generated is identical
to A, except that A; is replaced by B;. For example, Oxx # 01x = 00x, and Oxx # 010 =
{00x, 0x1}.

We will now show how the #-operation can be used to find the essential prime impli-
cants. Let P be the set of all prime implicants of a given function f. Let p’ denote one prime
implicant in the set P and let DC denote the don’t-care vertices for f. (We use superscripts
to refer to different prime implicants in this section because we are using subscripts to refer
to coordinate positions in cubes.) Then p' is an essential prime implicant if and only if

P # P —p)#DC # ¢

This means that p’ is essential if there exists at least one vertex for which f = 1 that is
covered by p/, but not by any other prime implicant. The #-operation is also performed with
the set of don’t-care cubes because vertices in p' that correspond to don’t-care conditions
are not essential to cover. The meaning of p' # (P — p') is that the #-operation is applied
successively to each prime implicant in P. For example, consider P = {p', p?, p*, p*} and
DC = {d', d*}. To check whether p? is essential, we evaluate

(PP #pHY #pD) #pH #d") #d?

If the result of this expression is not @, then p3 is essential.

223

224

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

Example 4.18

In Example 4.16 we determined that the cubes x11 and Oxx are the prime implicants of
the function f in Figure 4.9. We can discover whether each of these prime implicants is
essential as follows

x11 #0xx =111 # ¢
Oxx # x11 = {00x, 0x0} # ¢
The cube x11 is essential because it is the only prime implicant that covers the vertex 111,

for which f = 1. The prime implicant Oxx is essential because it is the only one that covers
the vertices 000, 001, and 010. This can be seen in the Karnaugh map in Figure 4.9.

Example 4.19

In Example 4.17 we found that the prime implicants of the function in Figure 4.10 are P =
{x01x, x101, 01x1, Ox1x, xx10}. Because this function has no don’t-cares, we compute

x01x # (P —x01x) = 1011 # ¢

This is computed in the following steps: x01x # x101 = x01x, then x01x # 01x1 = x01x,
then x01x # Ox1x = 101x, and finally 101x # xx10 = 1011. Similarly, we obtain

x101 # (P —x101) = 1101 # ¢

Olx1# (P -01x1)=¢

Ox1x # (P -0x1x) = ¢

xx10# (P —xx10) = 1110 # ¢
Therefore, the essential prime implicants are x01x, x101, and xx10 because they are the
only ones that cover the vertices 1011, 1101, and 1110, respectively. This is obvious from
the Karnaugh map in Figure 4.10.

When checking whether a cube A is essential, the #-operation with one of the cubes in

P — A may generate multiple cubes. If so, then each of these cubes has to be checked using
the #-operation with all of the remaining cubes in P — A.

4.10.2 CoMPLETE PROCEDURE FOR FINDING A MINIMAL COVER

Having introduced the *- and #-operations, we can now outline a complete procedure for
finding a minimal cover for any n-variable function. Assume that the function f is specified
in terms of vertices for which f = I; these vertices are often referred to as the ON-set of
the function. Also, assume that the don’t-care conditions are specified as a DC-set. Then
the initial cover for f is a union of the ON and DC sets.

Prime implicants of f can be generated using the x-operation, as explained in section
4.10. Then the #-operation can be used to find the essential prime implicants as presented
in section 4.10.1. If the essential prime implicants cover the entire ON-set, then they form
the minimum-cost cover for f. Otherwise, it is necessary to include other prime implicants
until all vertices in the ON-set are covered.

4.10 A CuUBICAL TECHNIQUE FOR MINIMIZATION 225

A nonessential prime implicant p' should be deleted if there exists a less-expensive

prime implicant p/ that covers all vertices of the ON-set that are covered by p’. If the
remaining nonessential prime implicants have the same cost, then a possible heuristic ap-
proach is to arbitrarily select one of them, include it in the cover, and determine the rest of
the cover. Then an alternative cover is generated by excluding this prime implicant, and
the lower-cost cover is chosen for implementation. We already used this approach, which
is often referred to as the branching heuristic, in sections 4.2.2 and 4.9.2.

The preceding discussion can be summarized in the form of the following minimization

procedure:

1. Let C® = ON U DC be the initial cover of function f and its don’t-care conditions.

2. Find all prime implicants of C° using the x-operation; let P be this set of prime
implicants.

3. Find the essential prime implicants using the #-operation. A prime implicant p' is
essential if p' # (P — p*) # DC # ¢. If the essential prime implicants cover all
vertices of the ON-set, then these implicants form the minimum-cost cover.

4. Delete any nonessential p’ that is more expensive (i.e., a smaller cube) than some
other prime implicant p/ if p' # DC # p/ = ¢.

5. Choose the lowest-cost prime implicants to cover the remaining vertices of the
ON-set. Use the branching heuristic on the prime implicants of equal cost and retain
the cover with the lowest cost.

To illustrate the minimization procedure, we will use the function Example 4.20

f(xr, X2, X3, X4, X5) = Zm(O, 1,4,8,13, 15, 20, 21, 23,26, 31) + D(5, 10, 24, 28)

To help the reader follow the discussion, this function is also shown in the form of a
Karnaugh map in Figure 4.43.

XXy *1%2
BN o0 01 11 10 BN 0 01 11 10
ool 1]1]d 0| 1
01 d |1 01
1 1 111
10| 1 d |1 0f d |1 1
x5 =0 x5 =1

Figure 4.43 The function for Example 4.20.

226

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

Instead of f being specified in terms of minterms, let us assume that f is given as the
following SOP expression

[= X1X3X4Xs5 4 X1X0X3X4X5 + X1X2X3X4X5 + X1X2X3X5 + X1 X2X3X5 + X1 X3X4X5 + X2X3X4Xs
Also, we will assume that don’t-cares are specified using the expression
DC = x1xX4X5 + X1X2X3X4X5 + X1X2X3X4X5
Thus, the ON-set expressed as cubes is
ON = {0x000, 11010, 00001, 011x1, 101x1, 1x111, x0100}
and the don’t-care set is
DC = {11x00, 01010, 00101}

The initial cover C° consists of the ON-set and the DC-set:

€% = {0x000, 11010, 00001, 011x1, 101x1, 1x111, x0100, 11x00, 01010, 00101}
Using the *-operation, the subsequent covers obtained are

C' = {0x000, 011x1, 101x1, 1x111, x0100, 11x00, 0000x, 00x00, x1000, 010x0, 110x0,
x1010, 00x01, x1111, 0x101, 1010x, x0101, 1x100, 0010x)

C2 = {0x000, 011x1, 101x1, 1x111, 11x00, x1111, 0x101, 1x100, x010x, 00x0x, x10x0}

=2

Therefore, P = C2.

Using the #-operation, we find that there are two essential prime implicants: 00x0x
(because it is the only one that covers the vertex 00001) and x10x0 (because it is the only one
that covers the vertex 11010). The minterms of f covered by these two prime implicants
are m(0, 1, 4, 8, 26).

Next, we find that 1x100 can be deleted because the only ON-set vertex that it covers is
10100 (myg), which is also covered by x010x and the cost of this prime implicant is lower.
Note that having removed 1x100, the prime implicant x010x becomes essential because
none of the other remaining prime implicants covers the vertex 10100. Therefore, x010x
has to be included in the final cover. It covers m(20, 21).

There remains to find prime implicants to cover m(13, 15, 23, 31). Using the branching
heuristic, the lowest-cost cover is obtained by including the prime implicants 011x1 and
1x111. Thus the final cover is

Chinimum = {00x0x, x10x0, x010x, 011x1, 1x111}
The corresponding sum-of-products expression is
[= X1X0X4 + x2X3X5 + X2X3%4 + X1 X2X3X5 + X1 X3X4X5

Although this procedure is tedious when performed by hand, it is not difficult to write a
computer program to implement the algorithm automatically. The reader should check the
validity of our solution by finding the optimal realization from the Karnaugh map in Fig-
ure 4.43.

4.11 PRrRACTICAL CONSIDERATIONS

227

4.11 PrAcCTICAL CONSIDERATIONS

The purpose of the preceding section was to give the reader some idea about how mini-
mization of logic functions may be automated for use in CAD tools. We chose a scheme
that is not too difficult to explain. From the practical point of view, this scheme has some
drawbacks. The main difficulty is that the number of cubes that must be considered in the
process can be extremely large.

If the goal of minimization is relaxed so that it is not imperative to find a minimum-cost
implementation, then it is possible to derive heuristic techniques that produce good results
in reasonable time. A technique of this type forms the basis of the widely used Espresso
program, which is available from the University of California at Berkeley via the World
Wide Web. Espresso is a two-level optimization program. Both input to the program and
its output are specified in the format of cubes. Instead of using the x-operation to find the
prime implicants, Espresso uses an implicant-expansion technique. (See problem 4.30 for
an illustration of the expansion of implicants.) A comprehensive explanation of Espresso
is given in [19], while simplified outlines can be found in [3, 12].

The University of California at Berkeley also provides two software programs that
can be used for design of multilevel circuits, called MIS [20] and SIS [21]. They allow a
user to apply various multilevel optimization techniques to a logic circuit. The user can
experiment with different optimization strategies by applying techniques such as factoring
and decomposition to all or part of a circuit. SIS also includes the Espresso algorithm for
two-level minimization of functions, as well as many other optimization techniques.

Numerous commercial CAD systems are on the market. Four companies whose prod-
ucts are widely used are Cadence Design Systems, Mentor Graphics, Synopsys, and Syn-
plicity. Information on their products is available on the World Wide Web. Each company
provides logic synthesis software that can be used to target various types of chips, such as
PLDs, gate arrays, standard cells, and custom chips. Because there are many possible ways
to synthesize a given circuit, as we saw in the previous sections, each commercial product
uses a proprietary logic optimization strategy based on heuristics.

To describe CAD tools, some new terminology has been invented. In particular, we
should mention two terms that are widely used in industry: fechnology-independent logic
synthesis and technology mapping. The first term refers to techniques that are applied when
optimizing a circuit without considering the resources available in the target chip. Most
of the techniques presented in this chapter are of this type. The second term, technology
mapping, refers to techniques that are used to ensure that the circuit produced by logic
synthesis can be realized using the logic resources available in the target chip. A good
example of technology mapping is the transformation from a circuit in the form of logic
operations such as AND and OR into a circuit that consists of only NAND operations. This
type of technology mapping is done when targeting a circuit to a gate array that contains
only NAND gates. Another example is the translation from logic operations to lookup
tables, which is done when targeting a design to an FPGA.

Chapter 12 discusses the CAD tools in detail. It presents a typical design flow that a
designer may use to implement a digital system.

228

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

4,12 EXAMPLES OF CIRCUITS SYNTHESIZED FROM VHDL
CoDE

Section 2.10 shows how simple VHDL programs can be written to describe logic functions.
This section introduces additional features of VHDL and provides further examples of
circuits designed using VHDL code.

Recall that a logic signal is represented in VHDL as a data object, and each data object
has an associated type. In the examples in section 2.10, all data objects have the type BIT,
which means that they can assume only the values 0 and 1. To give more flexibility, VHDL
provides another data type called STD_LOGIC. Signals represented using this type can have
several different values.

As its name implies, STD_LOGIC is meant to serve as the standard data type for
representation of logic signals. An example using the STD_LOGIC type is given in Figure
4.44. The logic expression for f corresponds to the truth table in Figure 4.1; it describes f
in the canonical form, which consists of minterms. To use the STD_LOGIC type, VHDL
code must include the two lines given at the beginning of the figure. These statements serve
as directives to the VHDL compiler. They are needed because the original VHDL standard,
IEEE 1076, did not include the STD_LOGIC type. The way that the new type was added
to the language, in the IEEE 1164 standard, was to provide the definition of STD_LOGIC
as a set of files that can be included with VHDL code when compiled. The set of files is
called a library. The purpose of the first line in Figure 4.44 is to declare that the code will
make use of the IEEE library.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY funcl IS
PORT (x1,x2,x3 :IN STD_LOGIC;
f : OUT STD_LOGIC);
END funcl;

ARCHITECTURE LogicFunc OF funcl IS
BEGIN
f <= (NOT x1 AND NOT x2 AND NOT x3) OR

(NOT x1 AND x2 AND NOT x3) OR
(x1 AND NOT x2 AND NOT x3) OR
(x1 AND NOT x2 AND x3) OR
(x1 AND x2 AND NOT x3) ;

END LogicFunc ;

Figure 4.44 The VHDL code for the function in Figure 4.1.

4.12 EXAMPLES OF CIRCUITS SYNTHESIZED FROM VHDL CobDE

In VHDL there are two main aspects to the definition of a new data type. First, the set
of values that a data object of the new type can assume must be specified. For STD_LOGIC,
there are a number of legal values, but the ones that are the most important for describing
logic functions are 0, 1, Z, and —. We introduced the logic value Z, which represents
the high-impedance state, in section 3.8.8. The — logic value represents the don’t-care
condition, which we labeled as d in section 4.4. The second requirement is that all legal
uses in VHDL code of the new data type must be specified. For example, it is necessary to
specify that the type STD_LOGIC is legal for use with Boolean operators.

In the IEEE library one of the files defines the STD_LOGIC data type itself and specifies
some basic legal uses, such as for Boolean operations. In Figure 4.44 the second line of
code tells the VHDL compiler to use the definitions in this file when compiling the code.
The file encapsulates the definition of STD_LOGIC in what is known as a package. The
package is named std_logic_1164. It is possible to instruct the VHDL compiler to use only
a subset of the package, but the normal use is to specify the word all to indicate that the
entire package is of interest, as we have done in the figure.

For the examples of VHDL code given in this book, we will almost always use only
the type STD_LOGIC. Besides simplifying the code, using just one data type has another
benefit. VHDL is a strongly type-checked language. This means that the VHDL compiler
carefully checks all data object assignment statements to ensure that the type of the data
object on the left side of the assignment statement is exactly the same as the type of the data
object on the right side. Even if two data objects seem compatible from an intuitive point
of view, such as an object of type BIT and one of type STD_LOGIC, the VHDL compiler
will not allow one to be assigned to the other. Many synthesis tools provide conversion
utilities to convert from one type to another, but we will avoid this issue by using only the
STD_LOGIC data type in most cases. In the remainder of this section, a few examples of
VHDL code are presented. We show the results of synthesizing the code for implementation
in two different types of chips, a CPLD and an FPGA.

229

We compiled the VHDL code in Figure 4.44 for implementation in a CPLD, and the CAD
tools produced the expression

f=x+xx

which is the minimal sum-of-products form that we derived using the Karnaugh map in
Figure 4.5b. Figure 4.45 shows how this expression may be implemented in a CPLD. The
switches that are programmed to be closed are shown in blue. The gates used to implement
f are also highlighted in blue. Observe that only the top two AND gates are used in this
case. The bottom three AND gates have no effect because each is connected to both the
true and complemented versions of an unused input, which causes the output of the AND
gate to be 0.

Figure 4.46 gives the results of synthesizing the VHDL code in Figure 4.44 into an
FPGA. We assume that the compiler generates the same sum-of-products form as above.
Because the logic cells in the chip are four-input lookup tables, only a single logic cell is
needed for this function. The figure shows that the variables x|, x,, and x3 are connected

Example 4.21

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

(from interconnection wires)

X; Xy, X3 unused

Part of a PAL-like block

Figure 4.45 Implementation of the VHDL code in Figure 4.44.

1]12i314f
d 000 |1
0 — i d 00110
o — i, d 010 |1
n—i do11lo [—/
Xy — d 100 |1
4 d 101 |1
d 1101
d 1111/ o0
LUT

Figure 4.46 The VHDL code in Figure 4.44 implemented in a LUT.

to the LUT inputs called i, i3, and is. Input i; is not used because the function requires
only three inputs. The truth table in the LUT indicates that the unused input is treated as
a don’t-care. Thus only half of the rows in the table are shown, since the other half is
identical. The unused LUT input is shown connected to 0 in the figure, but it could just as
well be connected to 1.

It is interesting to consider the benefits provided by the optimizations used in logic
synthesis. For the implementation in the CPLD, the function was simplified from the

4.12 EXAMPLES OF CIRCUITS SYNTHESIZED FROM VHDL CobDE

original five product terms in the canonical form to just two product terms. However, both
the optimized and nonoptimized forms fit into a single macrocell in the chip, and thus they
have the same cost (the macrocell in Figure 4.45 has five product terms). Similarly, for
the FPGA it does not matter whether the function is minimized, because it fits in a single
LUT. The reason is that our example circuit is very small. For large circuits it is essential
to perform the optimization. Examples 4.22 and 4.23 illustrate logic functions for which
the cost of implementation is reduced when optimized.

231

The VHDL code in Figure 4.47 corresponds to the function f; in Figure 4.7. Since there are
six product terms in the canonical form, two macrocells of the type in Figure 4.45 would
be needed. When synthesized by the CAD tools, the resulting expression might be

[=Xx3 +x1X3%4

which is the same as the expression derived in Figure 4.7. Because the optimized expression
has only two product terms, it can be realized using just one macrocell and hence results in
a lower cost.

When f is synthesized for implementation in an FPGA, the expression generated may
be the same as for the CPLD. Since the function has only four inputs, it needs just one LUT.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY func2 IS
PORT (x1,x2,x3,x4 :IN STD_LOGIC;
f : OUT STD_LOGIC);
END func2 ;

ARCHITECTURE LogicFunc OF func2 IS
BEGIN
f <= (NOT x1 AND NOT x2 AND x3 AND NOT x4) OR

(NOT x1 AND NOT x2 AND x3 AND x4) OR
(x1 AND NOT x2 AND NOT x3 AND x4) OR
(x1 AND NOT x2 AND x3 AND NOT x4) OR
(x1 AND NOT x2 AND x3 AND x4) OR
(x1 AND x2 AND NOT x3 AND x4) ;

END LogicFunc;

Figure 4.47 The VHDL code for f; in Figure 4.7.

Example 4.22

232 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY func3 IS
PORT (x1, x2, X3, x4, x5,x6,x7 :IN STD_LOGIC;
f : OUT STD_LOGIC) ;
END func3;

ARCHITECTURE LogicFunc OF func3 IS
BEGIN
f <= (x1 AND x3 AND NOT x6) OR
(x1 AND x4 AND x5 AND NOT x6) OR
(x2 AND x3 AND x7) OR
(x2 AND x4 AND x5 AND x7) ;
END LogicFunc;

Figure 4.48 The VHDL code for the function of section 4.6.

Example 4.23 In section 4.6 we used a seven-variable logic function as a motivation for multilevel syn-
thesis. This function is given in the VHDL code in Figure 4.48. The logic expression is
in minimal sum-of-products form. When it is synthesized for implementation in a CPLD,
no optimizations are performed by the CAD tools. The function requires one macrocell.
This function is more interesting when we consider its implementation in an FPGA with
four-input LUTs. Because there are seven inputs, more than one LUT is required. If the
function is implemented directly as given in the VHDL code, then five LUTs are needed,
as depicted in Figure 4.49a. Rather than showing the truth table programmed in each LUT,
we show the logic function that is implemented at the LUT output. But, if the function is
synthesized as

[= (x1X¢ + x27) (X3 + x4%5)

which is the expression we derived by using factoring in section 4.6, then f can be imple-
mented using only two LUTs as illustrated in Figure 4.495. One LUT produces the term
S = x1X6 + x2x7. The other LUT implements the four-input function f = Sx3 + Sx4xs.

‘ 4.13 CoONCLUDING REMARKS

This chapter has attempted to provide the reader with an understanding of various aspects
of synthesis for logic functions. Now that the reader is comfortable with the fundamental
concepts, we can examine digital circuits of a more sophisticated nature. The next chapter
describes circuits that perform arithmetic operations, which are a key part of computers.

4.14 EXAMPLES OF SOLVED PROBLEMS 233

0_ —
X — X1¥3%6

X3 —
X6—

x; —]
Xy— X[X4X5X¢g

X5 —

X6—

0 —]
XZ——

XoX3X7

X3 —

Xy —

Xy—] XyX4X5X7

X5 —

X7 —

(a) Sum-of-products realization

X —
Xy — X1 Xg T XX

Xo—
X7 —

X3 —

X4 —
X5 —

(b) Factored realization

Figure 4.49 Implementation of the VHDL code in Figure 4.48.

4.14 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Problem: Determine the minimum-cost SOP and POS expressions for the function Example 4.24
f 1, x0, x3,x4) = > _m(4,6,8,10, 11, 12, 15) + D(3,5,7,9).

Solution: The function can be represented in the form of a Karnaugh map as shown in
Figure 4.50a. Note that the location of minterms in the map is as indicated in Figure 4.6.

234

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

X%
3N 00 01 11 10
00 M |G | (OH— x,%5%,
01 d d
1 [@ [[d[T [[IH— %57,
10 1 1
F—F
X‘lxz x])’cz

(a) Determination of the SOP expression

X%

3% 01 11 10

o)|8

00 1 1 1

orf(oll d T o] d— (x3+xp

11]|d d 1 1

]| 1 @ 1
! L (i +x+xy+xy)

(x;*+x,)

(b) Determination of the POS expression

Figure 4.50 Karnaugh maps for Example 4.24.

To find the minimum-cost SOP expression, it is necessary to find the prime implicants that
cover all 1s in the map. The don’t-cares may be used as desired. Minterm m is covered
only by the prime implicant X;x,, hence this prime implicant is essential and it must be
included in the final expression. Similarly, the prime implicants x;X, and x3x4 are essential
because they are the only ones that cover mjo and m;s, respectively. These three prime
implicants cover all minterms for which f = 1 except m ;. This minterm can be covered
in two ways, by choosing either x;X3X4 or x,X3X4. Since both of these prime implicants
have the same cost, we can choose either of them. Choosing the former, the desired SOP
expression is

[=%X1x + x1% + x3x4 + X1X3%4

These prime implicants are encircled in the map.

4.14 EXAMPLES OF SOLVED PROBLEMS

The desired POS expression can be found as indicated in Figure 4.50b. In this case,
we have to find the sum terms that cover all Os in the function. Note that we have written
0Os explicitly in the map to emphasize this fact. The term (x; + x;) is essential to cover the
Os in squares 0 and 2, which correspond to maxterms My and M,. The terms (x3 + X4) and
(X1 4+ X2 + X3 + x4) must be used to cover the Os in squares 13 and 14, respectively. Since
these three sum terms cover all Os in the map, the POS expression is

=01 +x2) (3 +X4) G + X2 + X3 4+ x4)

The chosen sum terms are encircled in the map.

Observe the use of don’t-cares in this example. To get a minimum-cost SOP expression
we assumed that all four don’t-cares have the value 1. But, the minimum-cost POS expres-
sion becomes possible only if we assume that don’t-cares 3, 5, and 9 have the value 0 while
the don’t-care 7 has the value 1. This means that the resulting SOP and POS expressions are
not identical in terms of the functions they represent. They cover identically all valuations
for which f is specified as 1 or 0, but they differ in the valuations 3, 5, and 9. Of course,
this difference does not matter, because the don’t-care valuations will never be applied as
inputs to the implemented circuits.

235

Problem: Use Karnaugh maps to find the minimum-cost SOP and POS expressions for the
function

F X1, .00, Xa) = X1X3X4 + X3X4 + X1X2X4 + X1X2X3X4
assuming that there are also don’t-cares defined as D =) (9, 12, 14).

Solution: The Karnaugh map that represents this function is shown in Figure 4.51a. The
map is derived by placing 1s that correspond to each product term in the expression used
to specify f. The term X;x3X4 corresponds to minterms 0 and 4. The term x3x,4 represents
the third row in the map, comprising minterms 3, 7, 11, and 15. The term Xx;X,x4 specifies
minterms 1 and 3. The fourth product term represents the minterm 13. The map also
includes the three don’t-care conditions.

To find the desired SOP expression, we must find the least-expensive set of prime
implicants that covers all Is in the map. The term x3x4 is a prime implicant which must
be included because it is the only prime implicant that covers the minterm 7; it also covers
minterms 3, 11, and 15. Minterm 4 can be covered with either xX;x3x4 or x,x3X4. Both of
these terms have the same cost; we will choose X;X3X4 because it also covers the minterm 0.
Minterm 1 may be covered with either X;X,x3 or X,x4; we should choose the latter because
its cost is lower. This leaves only the minterm 13 to be covered, which can be done with
either x;x4 or x1x; at equal costs. Choosing x;x4, the minimum-cost SOP expression is

[= x3%4 + X1X3%4 + XoX4 + X1X4

Figure 4.51b shows how we can find the POS expression. The sum term (x3 + x4)
covers the Os in the bottom row. To cover the 0 in square 8 we must include (x; + x4). The

Example 4.25

236 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

\ank
01| 1) 1 (d]

1| [1 121-—x3x4

0 d W
XX

ool 11]ld]o
(x;+Xx,+x;+X,)
orf 1 |(0)f 1] d .

111 1 1 1 1

10[Co | o [[d]| o) (X3+xy)

(X +xy)

(b) Determination of the POS expression

Figure 4.51 Karnaugh maps for Example 4.25.

remaining 0, in square 5, must be covered with (x; +X, +x3 +X4). Thus, the minimum-cost
POS expression is

=03 +x) X+ x4) 001 + X2 +x3 +X4)

Example 4.26 Problem: Use the tabular method of section 4.9 to derive a minimum-cost SOP expression
for the function

SO, o0, Xa) = X1 X3X4 + X3X4 4 X1 X0X4 + X1 X0X3X4

assuming that there are also don’t-cares defined as D =) (9, 12, 14).

4.14 EXAMPLES OF SOLVED PROBLEMS

Solution: The tabular method requires that we start with the function defined in the form
of minterms. As found in Figure 4.51a, the function f can also be represented as

fGrx) =) m©,1,3,4,7,11,13,15) + DO, 12, 14)

The corresponding eleven 0O-cubes are placed in list 1 in Figure 4.52.

Now, perform a pairwise comparison of all O-cubes to determine the 1-cubes shown
in list 2, which are obtained by combining pairs of O-cubes. Note that all O-cubes are
included in the 1-cubes, as indicated by the checkmarks in list 1. Next, perform a pairwise
comparison of all 1-cubes to obtain the 2-cubes in list 3. Some of these 2-cubes can be
generated in multiple ways, but it is not useful to list a 2-cube more than once (for example,
x0x1 in list 3 can be obtained by combining from list 2 the cubes 1,3 and 9,11 or by using
the cubes 1,9 and 3,11). Note that all but three 1-cubes are included in the 2-cubes. It is not
possible to generate any 3-cubes, hence all terms that are not included in some other term
(the unchecked terms in list 2 and all terms in list 3) are the prime implicants of f. The set
of prime implicants is

P = {000x, 0x00, x100, xOx1, xx11, 1xx1, 11xx}
= {p1, P2, P3, P4, P5,> P6> P71}

To find the minimum-cost cover for f, construct the table in Figure 4.53a which shows
all prime implicants and the minterms that must be covered, namely those for which f = 1.
A checkmark is placed to indicate that a minterm is covered by a particular prime implicant.
Since minterm 7 is covered only by ps, this prime implicant must be included in the final

List 1 List 2 List 3

0,1
0,4
13
19
4,12
3,7
3,11
9,11
9,13
12,13
12,14

13911 |[x0x1

3,711,15 | x x 11
911,143,151 x x 1
12,13,14,15] 1 1 x x

<

Row|lsr|lo

~

11

R, PRrO|lRrrRo|loo| o
Rl PP oRr|rRoo|ro|o

m OrPrPr|loor|oo| o
r|lorrr|lorr|lor|o

14

P P P P X O|X X O|lO O
R P X O O X P O o|X o
X O O X PP |OO X o o
O X P P PPRP|OFRPFR|[O X

KK S <LK <K <

15

=
=

7,15
11,15
13,15
14,15

AN N T U N N U

N
PR X e
=X e
X =R

Figure 4.52 Generation of prime implicants for the function in Example 4.26.

237

238 CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

Prime Minterm

implicant 0 1 3 4 7 11 13 15
Ppp=000x|v Vv

P, =0x00 |V v

Py = x100 v
Py =x0x1 v v v
Ps = xx1l1 4 v v v
Pe=1xx1 v Vv VY
p; =11XxX v v

(a) Initial prime implicant cover table

Prime Minterm
implicant 0 1 4 13

P =000x v v

Py =0x00 v v
Py = x 0 x1 v
Pe =1 xx1 v

(b) After the removal of rows ps, psand p,, and columns 3, 7, 11 and 15

Figure 4.53 Selection of a cover for the function in Example 4.26.

cover. Observe that row p, dominates row p3, hence the latter can be removed. Similarly,
row pe dominates row p;. Removing rows ps, p3, and p7, as well as columns 3, 7, 11, and
15 (which are covered by ps), leads to the reduced table in Figure 4.53b. In this table, p,
and pg are essential. They cover minterms 0, 4, and 13. Thus, it remains only to cover
minterm 1, which can be done by choosing either p; or ps. Since p4 has a lower cost, it
should be chosen. Therefore, the final cover is

C = {p2, P4, P5, Ps)
= {0x00, x0x1, xx11, 1xx1}

and the function is implemented as

f = X1X3%4 4+ XoX4 + X3%4 + X1 X4

4.14 EXAMPLES OF SOLVED PROBLEMS 239

Problem: Use the *-product operation to find all prime implicants of the function Example 4.27
S xq, .o Xa) = X1X3%4 + X34 + X1 X0X4 + X1 X2X3X4

assuming that there are also don’t-cares defined as D =) (9, 12, 14).

Solution: The ON-set for this function is

ON = {0x00, xx11, 00x1, 1101}

The initial cover, consisting of the ON-set and the don’t-cares, is

C% = {0x00, xx11, 00x1, 1101, 1001, 1100, 1110}

Using the *-operation, the subsequent covers obtained are
C! = {0x00, xx11, 00x1, 000x, x100, 11x1, 10x1, 111x, x001, 1x01, 110x, 11x0}
C? = {0x00, xx11, 000x, x100, xOx1, 1xx1, 11xx}
P =C?

Therefore, the set of all prime implicants is

P = {X1X3X4, X3X4, X1X2X3, X2X3X4, X2X4, X1 X4, X1 X2}

Problem: Find the minimum-cost implementation for the function Example 4.28
Flxn, .o, x4) = X1X3%4 + X34 + X1X2X4 + X1 X0X3X4
assuming that there are also don’t-cares defined as D =) (9, 12, 14).

Solution: This is the same function used in Examples 4.25 through 4.27. In those examples,
we found that the minimum-cost SOP implementation is
f = x3x4 + X1X3X4 + XoX4 + X1 X4

which requires four AND gates, one OR gate, and 13 inputs to the gates, for a total cost
of 18.
The minimum-cost POS implementation is

=03 +x9) O +x4) (e + X2 +x3 +X4)

which requires three OR gates, one AND gate, and 11 inputs to the gates, for a total cost
of 15.

We can also consider a multilevel realization for the function. Applying the factoring
concept to the above SOP expression yields

[= (x1 + X2+ x3)x4 + X1 X3X4

This implementation requires two AND gates, two OR gates, and 10 inputs to the gates, for
a total cost of 14. Compared to the SOP and POS implementations, this has the lowest cost

240

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

in terms of gates and inputs, but it results in a slower circuit because there are three levels of
gates through which the signals must propagate. Of course, if this function is implemented
in an FPGA, then only one LUT is needed.

Example 4.29

Problem: In several commercial FPGAs the logic blocks are four-input LUTs. Two such
LUTs, connected as shown in Figure 4.54, can be used to implement functions of seven
variables by using the decomposition

f&r, .o x7) =flgta, ..., x4), X5, X6, X7]

It is easy to see that functions such as f = xjxpx3x4X5x6x7 and f = x; + x2 + x3 + x4 +
X5 4+ X + x7 can be implemented in this form. Show that there exist other seven-variable
functions that cannot be implemented with 2 four-input LUTs.

Solution: The truth table for a seven-variable function can be arranged as depicted in Figure
4.55. There are 27 = 128 minterms. Each valuation of the variables x;, x,, x3, and x4 selects
one of the 16 columns in the truth table, while each valuation of xs, xg, and x7 selects one
of 8 rows. Since we have to use the circuit in Figure 4.54, the truth table for /' can also be
defined in terms of the subfunction g. In this case, it is g that selects one of the 16 columns
in the truth table, instead of xi, x», x3, and x4. Since g can have only two possible values,
0 and 1, we can have only two columns in the truth table. This is possible if there exist
only two distinct patterns of 1s and Os in the 16 columns in Figure 4.54. Therefore, only a
relatively small subset of seven-variable functions can be realized with just two LUTs.

X1
X
LUT g

X3
X4

Xs

LUT |—— f
X6
X7

Figure 4.54 Circuit for Example 4.29.

X

PROBLEMS 241

XIXZX3X4
5X6%7 0000 0001 e 1110 1111
000 my myg My | My
001 ny g Mz | Mg
010 ny My Mg | Mixp
011 | m3 miy . Mis | M3
100 my myp My | Mg
101 ms my3 M7 | Migs
110 mg iy Mg | My
111 g mys Mg | My

Figure 4.55 A possible format for truth tables of seven-variable

functions.

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

*4.1
*4,2
4.3

4.4

*4.5

4.6

4.7

4.8

*4.9

4.10

Find the minimum-cost SOP and POS forms for the function f (x;, x2, x3) = Y_m(1, 2,3, 5).
Repeat problem 4.1 for the function f (x1, x2, x3) = Y_m(1,4,7) + D(2,5).

Repeat problem 4.1 for the function f(xy,...,x4) = [IM (0, 1, 2, 4,5, 7, 8, 9, 10, 12,
14, 15).

Repeat problem 4.1 for the function f(x;,...,xs) = > m(0, 2, 8,9, 10, 15) + D(1, 3,
6,7).

Repeat problem 4.1 for the function f(xy,...,xs) = [IM (1, 4,6, 7,9, 12,15, 17, 20, 21,
22,23,28,31).

Repeat problem 4.1 for the function f (x;, ..., x5) = Y m(0, 1,3,4,6,8,9, 11, 13, 14, 16,
19, 20, 21, 22, 24, 25) + D(5, 7, 12, 15, 17, 23).

Repeat problem 4.1 for the function f (xy, ..., xs) = > m(1,4,6,7,9, 10, 12, 15, 17, 19,
20, 23, 25, 26, 27, 28, 30, 31) + D(8, 16, 21, 22).

Find 5 three-variable functions for which the product-of-sums form has lower cost than the

sum-of-products form.

A four-variable logic function that is equal to 1 if any three or all four of its variables are
equal to 1 is called a majority function. Design a minimum-cost SOP circuit that implements
this majority function.

Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly
two or exactly three of its variables are equal to 1; otherwise it is equal to 0.

242

*4.11

*4,12

4.13

*4.14
*4.15
4.16
4.17
*4.18
4.19

4.20

*4,21

4.22

*4.23

4.24

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

Prove or show a counter-example for the statement: If a function f has a unique minimum-
cost SOP expression, then it also has a unique minimum-cost POS expression.

A circuit with two outputs has to implement the following functions
fOox) =) m(0,2,4,6,7,9) + D(10, 11)
g(x1, . X)) = Z m(2,4,9,10, 15) + D(0, 13, 14)

Design the minimum-cost circuit and compare its cost with combined costs of two circuits
that implement f and g separately. Assume that the input variables are available in both
uncomplemented and complemented forms.

Repeat problem 4.12 for the following functions

fxr, ... x5) = Zm(l, 4,5,11,27,28) + D(10, 12, 14, 15, 20, 31)
glxy, ..., x5) = Zm(O, 1,2,4,5,8, 14, 15, 16, 18, 20, 24, 26, 28, 31) + D(10, 11, 12, 27)

Implement the logic circuit in Figure 4.23 using NAND gates only.
Implement the logic circuit in Figure 4.23 using NOR gates only.
Implement the logic circuit in Figure 4.25 using NAND gates only.
Implement the logic circuit in Figure 4.25 using NOR gates only.

Consider the function f = x3x5 + X1x2X4 + X1X2X4 + X1X3X4 + X1X3X4 + X1X2X5 + X1 X2X5.
Derive a minimum-cost circuit that implements this function using NOT, AND, and OR
gates.

Derive a minimum-cost circuit that implements the function f (xy, ..., xs) = > m(4,7,8,
11) + D(12, 15).

Find the simplest realization of the function f (x|, ..., xs) = Y m(0, 3,4,7,9, 10, 13, 14),
assuming that the logic gates have a maximum fan-in of two.

Find the minimum-cost circuit for the function f(x, ..., x4) = Y m(0,4, 8, 13, 14, 15).
Assume that the input variables are available in uncomplemented form only. (Hint: use
functional decomposition.)

Use functional decomposition to find the best implementation of the function f (x, ...,
xs) =Y m(1,2,7,9, 10, 18, 19, 25, 31) 4+ D(0, 15, 20, 26). How does your implementa-
tion compare with the lowest-cost SOP implementation? Give the costs.

Use the tabular method discussed in section 4.9 to find a minimum cost SOP realization for
the function

FXty .. xg) = Zm(O, 2,4,5,7,8,9,15)

Repeat problem 4.23 for the function

G, . o x) = Zm(0,4, 6,8,9,15)+D(@3,7,11,13)

4.25

4.26

4.27

4.28

4.29

4.30

PROBLEMS 243

Repeat problem 4.23 for the function

Sy, ..o x) = Zm(O, 3,4,5,7,9,11) 4+ D(8, 12, 13, 14)

Show that the following distributive-like rules are valid
(A-B)#C = (A#C) - (B#CO)
(A + B)#C = (A#C) + (B#C)

Use the cubical representation and the method discussed in section 4.10 to find a minimum-
cost SOP realization of the function f (xy, ..., x4) = Y m(0,2,4,5,7,8,9, 15).

Repeat problem 4.27 for the function f(xj,...,xs) = X|X3X5 + X|X2X3 + XpX3X4X5 +
X1X2X3X4 + X1 X2X3X4X5 + X1 X2X4X5 + X1X3X4X5.

Use the cubical representation and the method discussed in section 4.10 to find a minimum-
cost SOP realization of the function f(x, ..., x4) defined by the ON-set ON = {00x0,
100x, x010, 1111} and the don’t-care set DC = {00x1, 011x}.

In section 4.10.1 we showed how the x-product operation can be used to find the prime
implicants of a given function f. Another possibility is to find the prime implicants by
expanding the implicants in the initial cover of the function. An implicant is expanded
by removing one literal to create a larger implicant (in terms of the number of vertices
covered). A larger implicant is valid only if it does not include any vertices for which
f = 0. The largest valid implicants obtained in the process of expansion are the prime
implicants. Figure P4.1 illustrates the expansion of the implicant X;x,x3 of the function in
Figure 4.9, which is also used in Example 4.16. Note from Figure 4.9 that

[= x1X2X3 + x1X%2x3 + X1X2X3

X1X,X3
XXy X1X3 XXy
Xy X, X3 X X, x|
NO NO NO NO
Figure P4.1 Expansion of implicant X,x,x3.

In Figure P4.1 the word NO is used to indicate that the expanded term is not valid,
because it includes one or more vertices from f. From the graph it is clear that the largest
valid implicants that arise from this expansion are x,x3 and X;; they are prime implicants
of f.

Expand the other four implicants given in the initial cover in Example 4.14 to find all
prime implicants of /. What is the relative complexity of this procedure compared to the
x-product technique?

244

4.31

*4.32

4.33

4.34

4.35

4.36

4.37

4.38
4.39

4.40
4.41

4.42

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

Repeat problem 4.30 for the function in Example 4.17. Expand the implicants given in the
initial cover C°.

Consider the logic expressions
[= X1X2X5 + X1X2X4X5 + X1X2X4X5 + X1 X2X3X4 + X1X2X3X5 + X2X3X4X5 + X1 X2X3X4X5
8 = XoX3X4 + X0X3X4X5 + X1X3X4X5 + X1 X2X4X5 + X1X3X4X5 + X1 X2X3X5 + X1 X2X3X4X5
Prove or disprove that f = g.
Repeat problem 4.32 for the following expressions
[= X1X0X3 + XoX4 + X1X0X4 + X2X3X4 + X1X2X3
g = (%2 +x3 + x4) (X1 + X2 +x4) 2 + X3 + X4) (1 +x2 + X3) (1 + X2 + Xg)

Repeat problem 4.32 for the following expressions

f = x2X3X4 4 Xox3 + X2X4 4 X1X2X4 + X1 X2X3X5
g = (X +x3 +x4) (X2 + X3 + x5)(x1 + X2 +X3) (X2 + X3 + X4 + X5)

A circuit with two outputs is defined by the logic functions
[= x1X2X3 + X2X4 + XoX3X4 + X1 X2X3X4
g = X1X3X4 + X1X2X4 4+ X1 X3X4 + X2X3X4
Derive a minimum-cost implementation of this circuit. What is the cost of your circuit?

Repeat problem 4.35 for the functions

[=& +x204+X3)(01 +x3 +X2)(x1 + X2 +x3) (X1 +x2 + x2) (X1 + X2 +Xa)
g =1 +x2+X3)(X1 +X2 +X4) (X2 + X3 + X4) (X1 + X2 + X3 + X4)

A given system has four sensors that can produce an output of O or 1. The system operates
properly when exactly one of the sensors has its output equal to 1. An alarm must be raised
when two or more sensors have the output of 1. Design the simplest circuit that can be used
to raise the alarm.

Repeat problem 4.37 for a system that has seven sensors.

Find the minimum-cost circuit consisting only of two-input NAND gates for the function
fQp, .o, xa) =Y m(0,1,2,3,4,6,8,9, 12). Assume that the input variables are avail-
able in both uncomplemented and complemented forms. (Hint: Consider the complement
of the function.)

Repeat problem 4.39 for the function f (xy, ..., x4) = Y m(2,3,6,8,9,12).

Find the minimum-cost circuit consisting only of two-input NOR gates for the function
S, xq) = > m(6,7,8,10, 12, 14, 15). Assume that the input variables are available
in both uncomplemented and complemented forms. (Hint: Consider the complement of
the function.)

Repeat problem 4.41 for the function f (xi, ..., x4) = Y m(2,3,4,5,9, 10, 11, 12, 13, 15).

4.43

4.44
4.45
4.46
4.47
4.48

PROBLEMS 245

Consider the circuit in Figure P4.2, which implements functions f and g. What is the cost of
this circuit, assuming that the input variables are available in both true and complemented
forms? Redesign the circuit to implement the same functions, but at as low a cost as
possible. What is the cost of your circuit?

X
)
X4

Xy

) O—1

X4

0

£
U

X1

X

X3

Xq

%W

*
X4
Figure P4.2 Circuit for problem 4.43.

Repeat problem 4.43 for the circuit in Figure P4.3. Use only NAND gates in your circuit.
Write VHDL code to implement the circuit in Figure 4.25b.
Write VHDL code to implement the circuit in Figure 4.27c.
Write VHDL code to implement the circuit in Figure 4.28b.

Write VHDL code to implement the function f (xi, ..., x4) = > m(0, 1,2,4,5,7,8,9, 11,
12, 14, 15).

246

4.49

4.50
4.51

CHAPTER 4 ¢ OpPTIMIZED IMPLEMENTATION OF LoGICc FUNCTIONS

X1

X2

}
}

X2

X3

7
.

X2 —]
X4 —
X —]

X2 —

X —

X3 —

X2 —]

Loy T

X3 —

Figure P4.3 Circuit for problem 4.44.

Write VHDL code to implement the function f(xy,...,xs) = > m(1,4,7,14,15) +
D(0,5,9).

Write VHDL code to implement the function f (xy, ..., x4) = 1M (6, 8, 9, 12, 13).

Write VHDL code to implement the function f(xy, ..., xq) = IIM (3, 11, 14) + D(0, 2,
10, 12).

REFERENCES

1. M. Karnaugh, “A Map Method for Synthesis of Combinatorial Logic Circuits,”
Transactions of AIEE, Communications and Electronics 72, part 1, November 1953,
pp- 593-599.

2.

REFERENCES

R. L. Ashenhurst, “The Decomposition of Switching Functions,” Proc. of the
Symposium on the Theory of Switching, 1957, Vol. 29 of Annals of Computation
Laboratory (Harvard University: Cambridge, MA, 1959), pp. 74-116.

. F.J. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis on VLSI,

4th ed. (Wiley